
www.manaraa.com

Computational Modeling of

Design Requirements for

Buildings

Magd A. Donia

Submitted to the School of Architecture
of Carnegie Mellon University in partial fulfillment of

the requirements for the degree of Doctor of Philosophy

School of Architecture and
Institute for Complex Engineered Systems (ICES)

Carnegie Mellon University

Advisory Committee

Ömer Akin [Chair]
Professor

School of Architecture
Carnegie Mellon University

Steven Fenves
Professor

Department of Civil and Environmental Engineering and
Institute for Complex Engineered Systems (ICES)

Carnegie Mellon University

Ulrich Flemming
Professor

School of Architecture and
Institute for Complex Engineered Systems (ICES)

Carnegie Mellon University

www.manaraa.com

I hereby declare that I am the author of this dissertation.

I authorize Carnegie Mellon University to lend this dissertation to other
institutions or individuals for the purpose of scholarly research.

I further authorize Carnegie Mellon University to reproduce this dissertation
by photocopying or by other means, in total or in part, at the request of other

institutions or individuals for the purpose of scholarly research.

Magd Donia

Copyright © 1998 by Magd Donia
All rights reserved

www.manaraa.com

Abstract

PhD Thesis - Spring 98 iii

During the past few years, several computational design support and simulation

tools for building design have emerged, from research as well as industrial institu-

tions. Many of these tools provide design generation and evaluation mechanisms

which assist building designers to rapidly create and evaluate design alternatives.

These tools normally require a relatively large input of design requirements infor-

mation, from which design representations are created and evaluated. The usability

of design support and evaluation systems has been adversely affected by the lack of

computable representations of design requirements. Such representations can pro-

vide a repository from which the input information needed by design support and

simulation systems can be generated.

This thesis provides a description for a computable model of building design

requirements that supports:

• the diverse nature of information typically associated with the architectural pro-
gramming stage, and

• deriving specialized representations needed by other design support and perfor-
mance simulation systems.

The approach used to achieve these research goals is a framework that contains

organizing concepts and software building blocks from which representations of

design requirements can be built.The research builds on and augments the work

accomplished in SEED-Pro (the architectural programming module of SEED) by re-

engineering its information model. It provides contributions in the areas of architec-

tural programming and design requirements modeling as well.

www.manaraa.com

iv PhD Thesis - Spring 98

www.manaraa.com

Contents

PhD Thesis - Spring 98 v

CHAPTER 1

Background and Motivation 1

1.1 The Evolution of Architectural Programming ..1
1.1.1 A Brief History ... 1
1.1.2 Evolution as a Separate Discipline .. 2

1.2 Problem Definition and Motivation ..3

1.3 Research Objective ..4

1.4 Research Objective Software Requirements ..5

1.5 Scope ...7

CHAPTER 2

An Overview of Conceptual Modeling 9

2.1 An Introduction to Information Systems Development and Conceptual Modeling9

2.2 Conceptual Schema ...10
2.2.1 A Database Perspective .. 11
2.2.2 An Application Perspective .. 11
2.2.3 An Application / Communication Perspective .. 12

2.3 Conceptual Models ...14
2.3.1 Semantic Models ... 14
2.3.2 Behavioral Models ... 15
2.3.3 Object-Oriented Models .. 16

2.4 The Conceptual Modeling Process Used ...17
2.4.1 Studying the Application Domain ... 18
2.4.2 Requirements Modeling: Defining the Information System Functionalities 19
2.4.3 Defining the Universe of Discourse (UoD) ... 20
2.4.4 Schema Modeling .. 20
2.4.5 Verifying and Testing the Schema ... 21

CHAPTER 3

A Study of the Application Domain 23

3.1 Architectural Programming in Existing Practices ..23

3.2 A Study of Computer-Aided Architectural Programming Tools25
3.2.1 An Overview of Commercial Systems ... 25
3.2.2 Problems and Shortcomings of Existing Tools .. 26
3.2.3 Research Systems: SEED-Pro .. 26

3.3 Achieving a Flexible Framework for Modeling Design Requirements32

www.manaraa.com

vi PhD Thesis - Spring 98

CHAPTER 4

A Computable Representation for Modeling Building Design Requirements 33

4.1 Modeling Principles and Considerations .. 33

4.2 Approaches to Modeling Design Requirements ... 35

4.3 Features of a Design Requirements Modeling Framework 36
4.3.1 Building Design Requirements ...36
4.3.2 Product Models ..37
4.3.3 Generation (mapping) Mechanisms ...39

CHAPTER 5

A Framework for Modeling and Manipulating Design Requirements 43

5.1 Framework Design ... 43
5.1.1 Overview ..44
5.1.2 Representing Product Models ..45
5.1.3 Representing Generation Mechanisms ..47
5.1.4 Representing Design Requirements ..50

5.2 Achieving Flexibility in the Framework Design ... 52
5.2.1 Object Compositions vs. Static Attributes ..52
5.2.2 Prototype-Based Object Creation ..52
5.2.3 Separating Generation Mechanisms from Product Models ...53
5.2.4 User Interface ..53
5.2.5 Expanding the Framework ...54

CHAPTER 6

Using the Design Requirements Modeling Framework 57

6.1 Modeling Mode .. 57
6.1.1 Creating a Product Model ..57
6.1.2 Creating a Generation Mechanism ..60

6.2 Using the Framework in the Designing Mode .. 63
6.2.1 Creating a Project ..63
6.2.2 Creating a Design Requirements Description ..64
6.2.3 Generating a Customized Output ..66

CHAPTER 7

Conclusions 71

7.1 Contributions .. 71
7.1.1 Architectural Programming ..72
7.1.2 Design Requirements Modeling ...72
7.1.3 SEED ...73

www.manaraa.com

PhD Thesis - Spring 98 vii

7.2 Enhancements and Future Research Directions ..73
7.2.1 Creating a SRPOUT Language Generator that Supports Multiple Shared Schemata 74
7.2.2 Modeling Evaluation and Integrity Checking Mechanisms .. 74
7.2.3 Investigating the Dependencies Between Classifications .. 75
7.2.4 Providing Classification-Based Attributes .. 75
7.2.5 Investigating Additional Uses for Indirect Mapping .. 75
7.2.6 Usability Analysis: Investigating Interface Metaphors for Representing and

Manipulating Design Requirements ... 75

CHAPTER 8

Bibliography 77

APPENDIX 1

Requirements Modeling Using Use Cases 87

A 1.1 Common Use Cases ..87
A 1.1.1 Start SEED-Pro .. 88
A 1.1.2 Open Product Library ... 89
A 1.1.3 Close Product Library ... 90
A 1.1.4 Rename Product Library .. 91
A 1.1.5 Save Product Library .. 92

A 1.2 Use Cases for Modeler ...93
A 1.2.1 Create Product Library ... 95
A 1.2.2 Create New Product .. 96
A 1.2.3 Remove Product ... 97
A 1.2.4 Edit Product .. 98
A 1.2.5 Rename Product .. 99
A 1.2.6 Create Product Model .. 100
A 1.2.7 Edit Product Model ... 101
A 1.2.8 Rename Product Model .. 102
A 1.2.9 Copy Product / Product Model .. 103
A 1.2.10 Paste Product Model .. 104
A 1.2.11 Cut (Remove) Product .. 105
A 1.2.12 Cut (Remove) Product Model ... 106
A 1.2.13 Create Specification Category .. 107
A 1.2.14 Rename Specification Category ... 109
A 1.2.15 Create Specification Primitive ... 110
A 1.2.16 Rename Specification Primitive .. 112
A 1.2.17 Cut Product Modeling Element .. 113
A 1.2.18 Copy Product Modeling Element ... 115
A 1.2.19 Paste Specification Primitive ... 116
A 1.2.20 Create Classification Group .. 118
A 1.2.21 Rename Classification Group ... 120
A 1.2.22 Create Classifier ... 121

www.manaraa.com

viii PhD Thesis - Spring 98

A 1.2.23 Edit Classifier ..123
A 1.2.24 Paste Classifier ...125
A 1.2.25 Create Relation Type ..127
A 1.2.26 Rename Relation Type ...129
A 1.2.27 Create Generation Mechanism ...130
A 1.2.28 Setup Generation Mechanism ..132
A 1.2.29 Show Generation Report ...134
A 1.2.30 Direct-Map Specification Primitives ..136
A 1.2.31 Formula-Map Specification Primitive ...138
A 1.2.32 Map Classifiers ...140
A 1.2.33 Map Relation Type ...142
A 1.2.34 Create Specialized Mapping ..144

A 1.3 Use Cases for Designer ... 146
A 1.3.1 Create Project ...147
A 1.3.2 Open Project ...149
A 1.3.3 Save Project ...151
A 1.3.4 Rename Project ..153
A 1.3.5 Set Input Product Model ...154
A 1.3.6 Rename Product ...155
A 1.3.7 Copy Product ..156
A 1.3.8 Cut Product ...157
A 1.3.9 Paste Product ..158
A 1.3.10 Create Specification Unit ...159
A 1.3.11 Cut Specification Unit ..161
A 1.3.12 Copy Specification Unit ..162
A 1.3.13 Paste Specification Unit ..163
A 1.3.14 Edit Specification Unit ..165
A 1.3.15 Select Generation Mechanism ...166
A 1.3.16 Generate Output ..167

APPENDIX 2

System Object Models 169

A 2.1 Domain Object Models ... 169
A 2.1.1 The Product Modeling Module ...169
A 2.1.2 The Generation Mechanism Module ..174
A 2.1.3 The Design Requirements Module ..177

A 2.2 Interface Object Models ... 180
A 2.2.1 The Main Window ..180
A 2.2.2 The Product Libraries Window ...181
A 2.2.3 The Product Editor Window ...182
A 2.2.4 The Generation Manager Window ...183
A 2.2.5 The Classifier Editor Window ...184
A 2.2.6 The Projects Window ...185
A 2.2.7 The Specification Unit Editor Window ..186
A 2.2.8 The Tree View ..187

www.manaraa.com

PhD Thesis - Spring 98 ix

A 2.2.9 The Collection View ... 188
A 2.2.10 The Text Field and Popup Button View .. 189

www.manaraa.com

x PhD Thesis - Spring 98

www.manaraa.com

Figures

PhD Thesis - Spring 98 xi

Figure 1. The conceptual modeling process in the development of information systems .. 10
Figure 2. Different perspectives on the role of conceptual schema .. 13
Figure 3. An example of the three main perspectives of objects in the object-oriented approach 17
Figure 4. Generic Architecture of a SEED module [Flemming & Woodbury 95]. ... 27
Figure 5. User input windows in SEED-Pro .. 29
Figure 6. The SEED-Pro Project structure using the OMT notation. .. 30
Figure 7. The Specifications Object Model using the OMT notation. ... 31
Figure 8. Multiple conceptual schemata representing different product models .. 34
Figure 9. A conceptual framework to support modeling design requirements ... 37
Figure 10. The overall system architecture of the framework ... 44
Figure 11. The product modeling object model using the OMT notation .. 45
Figure 12. The use of 1:N recursive connection metapattern in modeling specification elements 46
Figure 13. The generation mechanism object model using the OMT notation ... 47
Figure 14. The use of 1:1 connection metapattern in modeling attribute mappings ... 48
Figure 15. The use of 1:N connection metapattern in modeling generation mechanisms ... 49
Figure 16. Design requirements object model using the OMT notation. .. 51
Figure 17. Using a variation of the Strategy pattern to create flexible generation mechanisms 53
Figure 18. Examples of the framework GUI showing its adaptability ... 54
Figure 19. The Main window .. 58
Figure 20. Using the Product Library window ... 58
Figure 21. The “Design Requirements Model” product model description in the Product Editor window 59
Figure 22. The “SL-Model” product model description in the Product Editor window. .. 60
Figure 23. Creating a generation mechanism for mapping two product models .. 61
Figure 24. A sample expression for specifying the number of output units according to classification mapping. 62
Figure 25. Specifying a product type for a project. ... 64
Figure 26. A sample design requirements description in the form of specification units. ... 65
Figure 27. Generating a customized output from an input SU hierarchy. ... 66
Figure 28. Properties of a generated output SU. .. 67
Figure 29. structuring an output hierarchy independently from the input one. ... 68
Figure 30. Starting SEED-Pro .. 88
Figure 31. Opening Product Library ... 89
Figure 32. Closing Product Library ... 90
Figure 33. Renaming Product Library .. 91
Figure 34. Saving Product Library .. 92
Figure 35. Creating Product Library ... 95
Figure 36. Adding a New Product to Library .. 96
Figure 37. Removing a Product .. 97
Figure 38. Editing (modeling) a Product ... 98
Figure 39. Renaming a Product ... 99
Figure 40. Creating a Product Model ... 100
Figure 41. Editing a Product Model .. 101
Figure 42. Renaming Product Model .. 102
Figure 43. Copying a Product or a Product Model ... 103
Figure 44. Pasting a Product .. 104

www.manaraa.com

xii PhD Thesis - Spring 98

Figure 45. Removing a Product ..105
Figure 46. Removing a Product Model ...106
Figure 47. Creating a Specification Category ...107
Figure 48. Renaming a Specification Category ..109
Figure 49. Creating a Specification Primitive ..110
Figure 50. Renaming a Specification Primitive ...112
Figure 51. Removing a Product Modeling Element ..113
Figure 52. Copying a Product Modeling Element ...115
Figure 53. Pasting a Specification Primitive ..116
Figure 54. Creating a Classification Group ...118
Figure 55. Editing a Classification Group ...120
Figure 56. Creating a Classifier ..121
Figure 57. Editing a Classifier ...123
Figure 58. Pasting a Specification Primitive ..125
Figure 59. Creating a Relation Type ...127
Figure 60. Rename a Relation Type ...129
Figure 61. Creating a Generation Mechanism ..130
Figure 62. Setting up a Generation Mechanism ...132
Figure 63. Displaying Generation Report ...134
Figure 64. Direct-Mapping Specification Primitives ..136
Figure 65. Formula-Mapping Specification Primitives ...138
Figure 66. Mapping Classifiers ...140
Figure 67. Mapping Relation Types ..142
Figure 68. Setting Generation Parameters ...144
Figure 69. Creating a New Project ..147
Figure 70. Opening an Existing Project ..149
Figure 71. Saving a Project ...151
Figure 72. Renaming a Project ...153
Figure 73. Setting the Specification Product Model ..154
Figure 74. Renaming a Product in a Project ...155
Figure 75. Copying a Product ...156
Figure 76. Removing a Product from a Project ...157
Figure 77. Pasting a Product to a Project ...158
Figure 78. Creating a Specification Unit ...159
Figure 79. Removing a Specification Unit ...161
Figure 80. Copying a Specification Unit ..162
Figure 81. Pasting a Specification Unit ...163
Figure 82. Editing Specification Unit ...165
Figure 83. Updating Specification Unit Settings from Product Model Defaults ...166
Figure 84. Generating an Output from Product Specifications ...167

www.manaraa.com

Tables

PhD Thesis - Spring 98 xiii

 Table 1. Phases of the design requirements modeling process supported by SEED-Pro and the SP_II framework.... 73

www.manaraa.com

xiv PhD Thesis - Spring 98

www.manaraa.com

Acknowledgements

PhD Thesis - Spring 98 xv

First, I would like to express my deepest love and gratitude for my parents. Their

support, guidance and advice have been the principal factors in getting me thus far.

They are what I treasure and care about the most in this life.

I’ve been very privileged to work with all three members of my advisory commit-

tee. It was a very enlightening, and humbling experience at the same time. Their

comprehensive knowledge, intelligence, dedication and personal integrity helped

me set a higher standard for myself on academic, professional and personal levels.

Prof. Akin provided me with all the time and effort I needed. He often presented me

with his extremely insightful observations and challenges that helped me during all

stages of my research. Prof. Fenves has provided a lot of valuable advice which

have shaped my research objectives. I’ve been very fortunate to work with him.

Prof. Flemming’s uncompromising, and relentless drive for excellence provided me

with an example to follow in pursuing my professional and personal objectives. I’ve

enjoyed his company watching and discussing World Cup and European champi-

onship soccer games. I’ve also enjoyed playing for his intramural tennis team at

CMU, despite me being the reason for losing a couple of close matches which could

have won us the tournament!

I’ve been very fortunate to be with a very talented group of students during my stay

at CMU. Jim Snyder was my colleague and first roommate when I moved to Pitts-

burgh. He is now one of my dearest friends who have helped me in more ways than

I could ever repay him. I would also like to thank my other roommates and dear

friends Safwan Ali, Georg Suter and Hesham Eissa. They made my stay in Pitts-

burgh and CMU as pleasant as I had ever hoped. I’ll miss the grueling tennis and

squash games with Georg, Safwan and Robert Ries, and the interesting and funny

experiences I had with all my CMU friends (two words: whitewater rafting!).

Working in the SEED project has been a tremendous learning experience for me.

I’ve learned so much from all project members, and would like to specially mention

Rana Sen (my “SEED-Bro”), Sheng-Fen (Nik) Chien (one of the brightest people I’ve

ever met), Weng-Jaw (Jonah) Tsai (resourceful computing dude), Zeyno Aygen (the

Classifier!), Michael Cumming and Ye Zhang.

www.manaraa.com

xvi PhD Thesis - Spring 98

Throughout my life, I’ve been blessed with many great friends. My college friend

Adham El-Sharqawi has been a true brother for me during the past 10 years. The tre-

mendous moral support he has been providing for my parents during my long journey

away from home was just what I expected from him. I’m truly honored to have him as a

friend.

www.manaraa.com

PhD Thesis - Spring 98 1

CHAPTER 1

Background and Motivation

This chapter provides background information in the history and evolution of the field
of architectural programming and the motivation behind the research described in this
document.

1.1 The Evolution of Architectural Programming

1.1.1 A Brief History

Throughout the course of history, it has been the case that buildings were conceived
only after some need had been formulated, which was then followed by instructions
given, in some form, to the architect and builder. These instructions were usually brief
and mainly functional [Kumlin 95], and it was left to the architect’s or the builder’s dis-
cretion to add the necessary amount of creativity and detail that satisfied the other non-
functional types of requirements, as well as add new requirements and explicate
implicit ones. This process used to work sufficiently, as building types were relatively
simple, until the industrial revolution at the beginning of the nineteenth century
brought in a proliferation of specialized building types. This created the need for elabo-
rate and specific architectural programs. Such programs became common towards the
end of the nineteenth century. Some architectural design competitions featured these
types of programs and resulted in notable and successful buildings, such as the Paris
Opera House by Garnier (1898-74) and the Amsterdam Stock Exchange by H. P. Berlage
(1898-1903). However, these programs were created and provided by the owners with
very little or no input from the architect.

This remained the case, in the United States at least, until the early 1960s when the
American Institute of Architects published a booklet titled Emerging Techniques of Archi-
tectural Practices [AIA 66] which was followed by a sequel in 1969 called Emerging Tech-
niques 2: Architectural Programming; by the book Problem Seeking: An Architectural
Programming Primer [Pena et al. 87]; and by Methods of Architectural Programming [Sanoff
74]. These publications emphasized the need for architects to assume the responsibility

www.manaraa.com

2 Phd Thesis - Spring 98

Background and Motivation

of developing architectural programs for the buildings they were commissioned to
design.

1.1.2 Evolution as a Separate Discipline

However, these publications differed with respect to the amount of programming the
architect needs to handle. The AIA booklet stated that the client was to provide the pro-
gram from which “the architect then can develop his [sic!] program from which the
designs are produced”. On the other hand, Problem Seeking provided an approach to
programming that formed a complete system. This approach developed into a success-
ful and widely emulated methodology which became the flagship of some notable AEC
practices. An example is HOK1, which purchased the professional service business of
CRSS, the authors of Problem Seeking.

The architectural programming method described in that book consists of five main
steps:

1. Establishing project goals which are mainly created by the client organization to
ensure its involvement in the project development.

2. Collecting, organizing and analyzing information that influences the design of a
project. This includes specific project requirements, such as budgets and space
requirements. Information pertaining to site considerations, utility services and exist-
ing codes and standards that have to be met is also collected and analyzed at this
stage. Goals established in the previous step help determine the type of information
needed.

3. Experimenting with different concepts and ideas that can realize project goals. Dur-
ing this stage, concepts are created, then tested against requirements and goals.
Many iterations of redefining requirements and verifying concepts can take place at
this stage. Concepts developed here are not meant to provide the designer with
physical solutions as input. Instead they should be programmatic concepts express-
ing material flow, functional relationships, flexibility, operations, and levels of safety
that constitute the conceptual segment of the program.

4. Determining needs in terms of quantifiable terms, such as building area, quality of
construction, equipment that will be used in the building, and construction cost and
time.

5. Developing the problem statement jointly by the programming and the design
teams. This statement serves as the premise for design and can be used to evaluate
the solution. It also constitutes an interface between programming and design.

These studies and methodologies caused architectural programming (AP) to evolve into
the process by which the design requirements for buildings are compiled and formu-
lated. There are many definitions of architectural programming. Duerk defines it as “the
process of managing information so that the right kind of information is available at the

1. Hellmut, Obata and Kassabaum, St. Louis Missouri.

www.manaraa.com

Phd Thesis - Spring 98 3

Problem Definition and Motivation

right stage of the design process and the best possible decisions can be made in shaping
the outcome of the building design.” [Duerk 93].

1.2 Problem Definition and Motivation

Architectural programming is generally concerned with two main categories of infor-
mation [Duerk 93]. The first is information describing the existing state within which
the design is to be embedded and includes such things as site analysis, client profiles,
codes, climate and all types of existing constraints. The second is the information
describing what the future state should be, which is the set of criteria, stated at different
levels of granularity, that the project should meet in order to be successful.

A study of current AP practices and supporting computational tools [Chapter 3] indi-
cates that architectural programming is perceived as an important step for formulating
design requirements that should be achieved in the finished design. However, several
problems limit the usability of architectural programs in practice and, consequently,
affect the effort invested in the programs. These problems mainly result from the format
in which these architectural programs are developed: a text document that contains a
description of the goals that the project should achieve; the way the project is structured
into existing and future elements (mainly spatial); and the specifications associated with
these elements. The descriptions of the project components and specifications are often
entered into a spreadsheet to provide a more structured view of the program and to
assist in its quantitative aspects, such as area and material calculations.

Such a format requires that the connection between the goals, expressed as text, and the
spatial elements and their specifications in the spreadsheet that realize these goals, be
maintained manually. It also provides no support for any type of non-numerical reason-
ing, reuse of existing architectural programs (either as a whole or parts of them) or
information transfer to other design systems because there is no underlying conceptual
representation to enable such functionalities. Such a representation cannot be practically
created for every architectural programming effort due to the complexities involved in
doing so. However, a general framework for creating and developing architectural pro-
grams offer the functionalities mentioned earlier, and if provided with a suitable inter-
face, could make the AP task easier and more manageable.

In addition, such a framework can serve as a front-end for design systems, supplying
them with the information they need to accomplish their tasks. It is well known that the
most time-consuming and difficult task in using most design and evaluation system,
such as simulation tools, is creating the building model for each of these systems—a
task that usually has to be repeated for each design and simulation tool used. This short-
coming can be overcome by extracting the information these systems need from a gen-
eral building specifications framework and “packaging” it in the format required by
these systems. For example, an HVAC design software can receive its input of air tem-
peratures, levels of humidity, and types of occupancy from the set of climatic require-
ments defined in such a framework.

www.manaraa.com

4 Phd Thesis - Spring 98

Background and Motivation

The problem addressed in this thesis, then is to create a representation of architectural
programming information which supports modeling of design requirements as well as
generating customized requirements for design systems that collaborate on the process
of producing and evaluating a building design.

1.3 Research Objective

The main objective behind this research is to provide the means to achieve an AP devel-
opment environment that is capable of representing the wide range of information asso-
ciated with an architectural program. This environment is envisioned to be
computationally-based to make use of existing technologies in information modeling
and management and to provide high-fidelity communication and data translation to
other design systems. This environment can be generally characterized as follows:

1. Providing means of storing and handling all aspects of the AP information including
site characteristics, codes, client preferences, and different performance criteria and
requirements.

2. Ensuring the use of criteria established during the programming phase as a basis of
design.

3. Integrating architectural programming and architectural design as a seamless pro-
cess.

4. Maintaining a database of reasons employed in making programming decisions, and
improving the computability of AP information by allowing non-numerical types of
reasoning not currently supported by the existing medium of representation (text
and spreadsheets).

5. Achieving a flexible way of interaction that does not tie the designer to a particular
model of AP.

6. Enabling the use of past programs and programmatic experience in future projects.

Providing means of storing and handling all aspects of the AP information will trans-
form the architectural program from a text document with a short life cycle and limited
use to a growing reservoir of information about the project, which reduces information
loss and increases architectural program usability. It is important to allow for all types
of information to be handled by the computer-aided architectural programming
(CAAP) tool, even those that are, presently, in a non-computable form, such as esthetics,
corporate missions, and management styles. Such information can still be stored as
plain text, just as it would be in a program text document. Its inclusion in the CAAP
environment would make that environment a self-sufficient source for addressing these
issues in later stages of design, eliminating the need for a companion text document, as
is the case with existing tools.

Ensuring that the criteria established during the programming phase are used as a basis
of design will enable the designer to find design decisions that do not meet criteria spec-
ified in the architectural program, as they will be flagged by the system. It will also
make the criteria specified in the program more reliable and realistic because designers

www.manaraa.com

Phd Thesis - Spring 98 5

Research Objective Software Requirements

will have to modify them if they cannot be met, rather than just violating these criteria
without making that violation evident to the programmer / designer. In that sense it
will make the program a more reliable source of project information.

The integration of architectural programming and architectural design is needed to real-
ize the previous characteristic. By integrating the CAAP tool with other CAAD systems
capable of supporting the other phases of the design process, AP would become an inte-
gral part of that process, and could help support its iterative nature in a seamless and
usable manner.

Maintaining a database of reasons employed in making programming decisions pro-
vides the basis for employing functional reasoning in design. As the CAAP tool is being
used, a database of logic-decision pairs can be formed. There might even be a way for
organizing that database in a computable form that permits applying inferencing mech-
anisms to deduce possible decisions based on the reasoning used. The practical implica-
tion of this is still not clear due to reliability concerns of decisions obtained in that
manner. However, such a database of reasons is still useful in determining the reasoning
behind decisions made during the course of developing a single project, even if it is not
reliably transferable to other projects.

Achieving a flexible way of interaction would make CAAP accessible to a wide variety
of practitioners who regard the AP process in different ways. It will also make the tool
useful for design support activities, such as feasibility studies, and to non-architects,
such as real estate developers and financiers.

Finally, the use of past programs in future projects, which capitalizes on some of the pre-
vious characteristics, would overcome a huge hurdle that prevents the use of past pro-
grams in future projects. This can drastically reduce the time and effort spent in
developing programs; it would also improve their quality as it would tend to accumu-
late knowledge, progressively refining past experiences.

1.4 Research Objective Software Requirements

To achieve these characteristics, certain software functionalities are needed. They can be
generally summarized as follows:

Representation of programing information: This calls for a software framework to rep-
resent the range of wide and diverse information associated with architectural program-
ming. The Specification Unit domain [Akin et. al., 95], is an example of such a
framework. The ongoing design of that framework has been a difficult, challenging but
also an exciting task, due to complexity of the information involved as well as the need
to accommodate other design tools to provide the integration goal stated in the previous

www.manaraa.com

6 Phd Thesis - Spring 98

Background and Motivation

section2. To achieve such a framework the following two software requirements must be
fulfilled.

Design flexibility using OOP techniques: Flexibility is a key to a successful design of a
framework that supports the representation of architectural programming information.
The reason is that this framework is expected to be in a state of flux for some time before
it reaches a state of relative stability. Until it reaches that stage, it should still be usable. It
also should be able to accommodate the needs of existing, as well as future, CAAD tools
that support the rest of the design process. OOP techniques provide useful mechanisms
to simplify system design and maintenance, such as inheritance and aggregation.
Recently, two system design mechanisms that increase the system flexibility -at the
expense of simplicity- were identified. These mechanism are generally referred to as
Composition and Delegation ([Gamma et al. 95] & [Rumbaugh et al. 91]), and Classification
([Brachman et al. 91] & [Woods 91]). To achieve a good system design, a balance of these
three important mechanisms is needed. Using each one with discretion is necessary to
achieve a rich, powerful, and flexible system design.

Information exchange: Communicating with existing and future CAAD systems is a
key to the success of any CAAP tool. The communication feature is needed to support
the transfer of information between different design systems. This information transfer
carries its share of complexities. It is quite realistic to assume that each design system
would have its own representation of information that is significantly different from
that of other design systems3. The CAAP tool will need to support the mapping of parts
of its representation to and from representations used by other tools, which can be
accomplished by using pair-wise translation or other more sophisticated techniques
such as language binding [Snyder et. al., 95].

Databases: These are needed for two main purposes: ➀ to accommodate the storage of
such a complex framework of information in a reliable and comprehensive manner that
increases its usability and provides useful functionalities in design data management
such as versioning; and ➁ to enable the reuse of past architectural programs, at any level
of detail, in future projects through sophisticated queries and case-based design.

Support for multiple platforms: The CAAP tool should support multiple platforms,
especially since it is quite difficult to speculate on what platforms would still exist in the
future. To achieve this, the choice of a development tool can be very important. Graphi-
cal user interfaces are the least portable portions of computer program code, as they are
usually written for a specific interface library and window system. ET++ and similar

2. The field of conceptual modeling provides useful mechanisms to achieve these types of rep-
resentations and will be discussed further in Chapter 2.

3. Efforts to create a common computable design representation for the building industry, faced
enormous difficulties. These were due to the inability of the various disciplines involved in
the building design and construction process to agree on a single building representation
stored in a shared database.

www.manaraa.com

Phd Thesis - Spring 98 7

Scope

application development frameworks provide a convenient environment for develop-
ing tools that are portable across platforms.

1.5 Scope

The environment described in the previous section involves a number of core research
areas, such as conceptual modeling [Loucopoulos et al. 92], case-based design
[Domeshek & Kolodner 92] & [Flemming et al. 94], and functional reasoning [Freeman
& Newell 71], as well as some support research areas, such as human-computer interac-
tion (HCI) [Hix et al. 93], databases [Ullman 88], and the processing of standards and
codes [Garret et. al., 95].

This research focuses on the conceptual modeling of AP information with the aim of
achieving the characteristics stated in the previous section, with special emphasis on
modeling building design-related information. Building such a model is the first step in
achieving the AP support environment described earlier.

Chapter 2 provides an overview of conceptual modeling and devises the conceptual
modeling process used as the methodology used to create the conceptual schema capa-
ble of supporting the tasks associated with AP. Chapter 3 presents a study of the AP
application domain (its information concepts and the ways in which it is utilized in
practice). It also contains an overview of existing computational systems that support
the application domain. Chapter 4 describes the design requirements and concepts
needed to support the AP application domain. It also defines the scope of the research in
terms of the functionalities provided in the prototype design. The system design is
described in detail in Chapter 5 using metapatterns [Pree 95] to explain the recurring
design patterns employed and their relations. Chapter 6 includes a description of how
the resulting system prototype can be used to create and manipulate models of design
requirements. Finally, Chapter 7 provides a summary and outline of the contributions
and future research areas that can be explored, based on this research.

www.manaraa.com

8 Phd Thesis - Spring 98

Background and Motivation

www.manaraa.com

Phd Thesis - Spring 98 9

An Introduction to Information Systems Development and Conceptual Modeling

CHAPTER 2

An Overview of Conceptual Modeling

This chapter provides a brief history of and introduction to conceptual modeling in
information systems. Conceptual modeling is presented in this chapter as the means to
create a computable model capable of supporting architectural programming practices.
It concludes with a description of the conceptual modeling process employed to create
the model.

2.1 An Introduction to Information Systems Development and
Conceptual Modeling

A large number of software systems can be called information systems. These are systems
which are data-intensive, transaction-oriented, with a substantial element of human
computer interaction [Loucopoulos 92]. Information systems are becoming, increas-
ingly, an integral part of our everyday life. They are essential in the effective running of
government, industry and commercial institutions. Their usage has evolved from the
automation of structured processes to applications that introduce change into funda-
mental procedures in many disciplines, such as engineering design and inventory man-
agement. As hardware and software technology have advanced, so has the demand for
the use of information systems in a wider spectrum of applications.

This demand has been coupled with an increase in the complexity and sophistication of
the tasks supported by information systems, thus rendering these systems more difficult
to develop and maintain. Ad-hoc approaches to the development of complex software
systems became increasingly inadequate and problematic. This was documented in sev-
eral publications; one of the most famous of these is [Brooks 95]. The increasing com-
plexity of information systems development led to the introduction of several high level
modeling languages and techniques by which functional application requirements can
be modeled at a conceptual level within a computational framework. Research in areas
such as Artificial Intelligence [Barr 89], Programming Languages [Minsky 75], Data-
bases [Ullman 88], Classification [Woods 91] & [Brachman et al. 91], and Software Engi-
neering [Rumbaugh et al. 91], as well as Linguistics and Congnitive Psychology [Simon
89], has contributed to the development of such modeling languages and techniques,
which are often referred to as conceptual models.

www.manaraa.com

10 Phd Thesis - Spring 98

An Overview of Conceptual Modeling

In addition to modeling languages and techniques, developing information systems
requires a constant empirical observation of a certain activity (such as banking or
designing an airplane) for the purpose of gaining knowledge and developing theories
about the nature of that activity, particularly how it is done, and the entities involved in
it (requirements modeling, [Figure 1]).

The subset of the world that is of interest to a specific information system is usually
referred to as the Universe of Discourse (UoD). The knowledge gained from this process is
abstracted and represented in a way that makes it possible to reason about it in the man-
ner required by the tasks to be performed (analysis and abstraction, [Figure 1]). Such a
process is sometimes referred to as formalization. These representations are then imple-
mented in a programming language and tested in the setting where the resulting system
should perform. In that respect, developing an information system involves creating “a
formal description of an abstract model of a piece of reality (the UoD)” [Loucopoulos
92]. Conceptual modeling is the process by which the formal description is created
[Figure 1]. This formal description is often referred to as the conceptual schema
[Mylopoulos 92].

2.2 Conceptual Schema

A conceptual schema is defined according to a conceptual model4. It represents static
(structural) as well as dynamic (behavioral) properties and rules of the application
domain [Loucopoulos 92]. It is the conceptual product of the modeling process and may

FIGURE 1. The conceptual modeling process in the development of information systems

Application Domain

Universe of Discourse (UoD)Preliminary
Conceptual Schema

Refined
Conceptual Schema

Implementation
Model

Software System

analysis &
abstraction

end users verification
& concept testing

adding implementation
requirements

implementation & testing

Conceptual Modeling

(formal description)

(using a mod-
eling language
or technique)

Requirements Model
requirements
modeling

define the UoD

www.manaraa.com

Phd Thesis - Spring 98 11

Conceptual Schema

be regarded as a general agreement -between the developers and end users of an infor-
mation system- on the way the UoD is perceived at the time of system development.

2.2.1 A Database Perspective

It is generally argued in the conceptual modeling literature that a conceptual schema
should be capable of supporting all applications in the UoD over their lifetime [Louco-
poulos 92]. This argument represents a database perspective of conceptual modeling in
which a conceptual schema determines the kind of information that is found in the data-
base and shared by a number of different applications. Such a perspective assumes that
the applications use the shared schema directly to represent and store information
[Figure 2, (a)]. It does not address situations where the information model of some
applications needs to be different from the shared schema or when an existing applica-
tion needs to be integrated with the shared schema.

2.2.2 An Application Perspective

In practice, however, adopting the database approach in the development of informa-
tion systems has not always been successful, especially in cases where a diverse group
of applications collaborate on the development of a single conceptual product, as is the
case with the design of buildings. During the past four years, alliances have been estab-
lished to create a shared conceptual schema for the building design and construction
industry, such as the “International Alliance of Interoperability”5 and AutoDesk’s
“Industry Foundation Classes”. Such efforts have previously faced enormous difficul-
ties in their mission, which were due to the inability of the various disciplines involved
in the building design and construction process to agree on a single building representa-
tion stored in a shared database. Since computer software became available for these
disciplines, each has developed its own conceptual building representation that befits
the type of design and evaluation tasks it performs. For example, HVAC design soft-
ware adopted representations of buildings that are drastically different from those
adopted by structural design software. Such differences in representations could either
be attributed to the way in which members of different disciplines were trained to think
about the design problems that exist in their domain, or to the difference in the nature of
the problems found in each domain. The latter view is supported by research in artificial
intelligence which indicates that the way a problem is represented makes a big differ-
ence in problem-solving effectiveness6 [Rich & Knight 91].

This difference in representations was acknowledge by recent research efforts, such as
the “Agent Communication Language” (ACL) project [Khedro 95], [Flemming et al. 92]

4. In keeping with database terminology, the term “conceptual model” will be used throughout
this thesis to refer to the modeling language or technique by which the conceptual schema is
developed.

5. WWW page for the International Alliance of Interoperability: http://www.interoperability.com/,
March 97.

www.manaraa.com

12 Phd Thesis - Spring 98

An Overview of Conceptual Modeling

in which the main aim was to develop an environment that supports the communica-
tion between different design systems working on a single building design. Each of
these systems supported a number of design tasks usually associated with a certain dis-
cipline, such as schematic layout design, structural design, and HVAC design and
energy simulation, and each system represented the building being designed according
to its own conceptual schema. The communication between these modules was accom-
plished through a facilitator. The facilitator provided schema translation and propaga-
tion of design changes from the system where the changes originate to other systems
that expressed interest in being informed of such changes. It was up to each individual
system to understand these propagation messages and update its internal representa-
tion accordingly to maintain consistency across different representations as there was no
notion of a persistent shared schema in this environment [Figure 2, (b)]. The shared
schema that resided in the facilitator was developed for data translation between appli-
cation specific schemata. However, a current design description represented according
to the shared schema was not stored persistently.

2.2.3 An Application / Communication Perspective

A different perspective of conceptual schema was adopted by the SEED project based,
in part, on the experience gained in the ACL project. The main aim of this project is to
create a software environment to support the early phases of building design [Flem-
ming et al. 92]. It is composed of different modules. Each supports a practice that takes
part in building design, such as architectural programming [Akin et. al., 95], schematic
layout design [Flemming & Chien 95], three dimensional building configuration [Wood-
bury & Chang 95] and structural design [Fenves et al. 95]. Like the ACL project, it
acknowledges the need for each module to have its local conceptual schema, but it also
includes a shared schema, which is stored persistently in a database, and consists of the
information that needs to be communicated to and shared across modules. Modules
map information between their local schemata and the shared one when needed
[Figure 2, (c)], and maintain an active link between these two schemata through lan-
guage binding techniques [Snyder et. al., 95].

Adopting a particular perspective on the role of conceptual schema in information sys-
tems depends on the nature of the information being modeled and the environment
within which the system under development will exist. It typically involves a trade-off
between consistency and flexibility. A centralized shared conceptual schema ensures the

6. A famous example which is usually cited in that respect is the Mutilated Checkerboard prob-
lem in [Rich & Knight 91], pp. 107-108. The problem is to find out if its possible to cover a nor-
mal checker board, which is missing two squares from opposite corners, with pieces of
dominoes, each of which covers two squares. The dominoes should be placed orthogonally
without overlapping. Such a problem can be represented as a drawing of the board showing
the missing corners. Such a representation doesn’t suggest an answer. Coloring every other
square in black will enhance the problem representation as it will show that missing corners
are of the same color. Providing a count of the squares of each color suggests the answer
immediately: no solution is possible because every piece of domino has to cover two squares
of different colors.

www.manaraa.com

Phd Thesis - Spring 98 13

Conceptual Schema

consistency of information and provides the highest fidelity in communication between
the applications that operate on that schema, as no translation is needed. On the other

FIGURE 2. Different perspectives on the role of conceptual schema

Database

Application (A)

Shared Conceptual Schema

Application (B) Application (C) Application (D)

a) Conceptual schema from a database perspective

b) Conceptual schema from an application perspective (adopted by the ACL project)

Application (A)

Application (A)

Conceptual Schema
Application (B)

Application (B)

Conceptual Schema
Application (C)

Application (C)

Conceptual Schema

c) Conceptual schema from an application/communication perspective (adopted by the SEED project)

Database

Application (A)

map to and from shared schema

Shared Conceptual Schema

Application (A)

Conceptual Schema
Application (B)

Application (B)

Conceptual Schema
Application (C)

Application (C)

Conceptual Schema

Facilitator
(message brokering and data translation)

store and retrieve information

www.manaraa.com

14 Phd Thesis - Spring 98

An Overview of Conceptual Modeling

hand, allowing each application to have its own conceptual schema permits these sche-
mata to be tailored to the needs of individual applications in order to support the types
of activities involved. It is important to identify the role of a conceptual schema within
an information system in order to address an appropriate set of requirements during the
schema development process.

2.3 Conceptual Models7

Conceptual models provide the format in which a conceptual schema is defined. They
were originally influenced by the database field, [Brodie 86], [Schmid 75] and [Codd 70],
which led to the development of the three classical database models: the hierarchical
model, the network model and the relational model. These models were mathematical for-
malisms that consist of two parts: a notation for describing data, and a set of operations
used to manipulate that data8.

Further developments in the field led to the creation of semantic models, which support
the representation of semantic (structural) aspects of world concepts, and behavioral
models, which support the behavioral (dynamic) aspects, as well as object-oriented models,
which support structural, behavioral and system interaction aspects. These three mod-
els are discussed in more detail in the following sections.

2.3.1 Semantic Models

Semantic models represent the database approach to conceptual modeling, which
emphasizes the static properties of the schema. These properties become a union of the
structural aspects extracted from all the programs that would use the schema. Semantic
models provide abstraction mechanisms that make it possible to reason about the enti-
ties and the relationships between them, before building these entities and relationships
into data structures. Semantic models were influenced by research on knowledge repre-
sentation schemes such as semantic networks [Peckham & Maryanski 88], and were based
on two main ideas: data independence, and abstraction forms. These ideas were expressed
in three seminal papers by [Chen 76], [Schmid 75] and [Schmidt 77].

Data independence means that the conceptual schema should be free from implementa-
tion requirements, such as the physical structure of the database or the restrictions
posed by a programming language. In that respect, a change made at the implementa-
tion level should not require any changes in the conceptual schema. One of the early
conceptual models based on the idea of data independence was the Entity-Relationship
Model introduced by Peter Chen [Chen 76].

7. Also known as “Conceptual Modeling Languages and Techniques”.
8. The entity relationship model lacks the notion of operations on data [Ullman 88], and there-

fore is not mentioned within the context of the three other model despite its importance as a
data model.

www.manaraa.com

Phd Thesis - Spring 98 15

Conceptual Models

Abstraction involves the ability to emphasize details essential to the problem and to
suppress the irrelevant ones [Brodie 86]. Semantic models provide support for abstrac-
tion through a number of fundamental mechanisms known as abstraction forms. These
mechanisms are generalization, aggregation, association and classification [Rolland et
al. 92]. Generalization provides a way of organizing entities that represent world con-
cepts into hierarchies based on shared properties. In such hierarchies, similarities
among entities could be emphasized by placing the more general ones higher in the
hierarchy and specifying specialized properties at the lower levels. This supports the
reuse of properties by allowing new entities to be derived from existing ones. Aggrega-
tion allows entities to exist as parts of other entities, thus allowing entities to be orga-
nized into hierarchies based on containment. In that hierarchy, an entity can only exist
as a part of another entity. Association is used to model all other types of relations that
exist between entities and do not form a hierarchy, while classification provides a way of
grouping entities according to concepts that are neither dependent on the structure of the con-
ceptual schema nor on shared properties between entities.

2.3.2 Behavioral Models

Although the main focus of semantic models is modeling structural relations within a
conceptual schema, some of these models have been extended to model the state transi-
tions and dynamic properties of a schema, such as TAXIS [Mylopoulos et al. 80]. The
need to model behavioral aspects of a conceptual schema has led to behavioral models.
These models introduced concepts and techniques for handling the dynamic aspects of
systems, and applied techniques developed for semantic modeling, such as generaliza-
tion and aggregations to actions. The development of behavioral models was largely
influenced by programming languages which emphasize system dynamics.

Behavioral models can be classified according to their approach to dynamic modeling
into two groups [Olive 86]. The first group follows the operational approach, in which
changes in the conceptual schema occur through operations that correspond to world
events. When these operations are applied, the system undergoes a state transition; to
ensure that only valid transitions take place, conditions are defined which determine
when operations can be applied to the conceptual schema. This approach requires the
definition of all allowable transitions on the schema. On the other hand, the other group
of behavioral models, which follows the declarative approach, emphasize logic over
control. This is done by specifying system behavior in the form of rules (which specify
“what” the system should do) without taking into account the explicit control over the
execution of these rules. Control is managed in an autonomous fashion through the use
of facts which contain information about system entities. A rule in the systems will exe-
cute if its set of valid facts exists without the user having to consciously cause that exe-
cution. Consequently, the execution of a rule can introduce more facts into the system,
causing the execution of more rules and so on.

The main distinction between operational and declarative approaches is that the former
is event-centered while the latter is entity-centered. Event-centered means that system
behavior is modeled around events that translate into operations being applied to enti-

www.manaraa.com

16 Phd Thesis - Spring 98

An Overview of Conceptual Modeling

ties. In entity-centered systems, in contrast, the state of system entities expressed as facts
determines the changes to take place.

2.3.3 Object-Oriented Models

Object-oriented languages have existed since the late 1960’s and early 1970’s with the
introduction of SIMULA-67 and SmallTalk. However, it was not until the late 1980’s that
the object paradigm emerged as a conceptual modeling approach that integrates struc-
tural as well as behavioral properties of systems. In this approach, objects represent
world concepts in three main perspectives [Rolland et al. 92].

The first is the static perspective, which represents objects attributes and structural rela-
tions between objects expressed as inheritance, aggregation, association and classification, in
a fashion similar to semantic models. The second is the behavioral perspective, which
specifies the events that may occur on a certain class of objects during their life-cycle.
The third is the process perspective, which focuses on the dynamic relationships between
objects and maintains the desired overall behavior of the system through the interaction
of system objects [Figure 3].

The object-oriented approach to system design provides four main contributions. The
first is the refinement of the concept of aggregation into composition, and reference [Brunet
91]. In a composition, the existence of component objects is dependent on the aggregate
object (a room contained inside a building will cease to exist after the building has been
destroyed). Reference, in contrast, refers to aggregations where the components can
exist independently of the aggregate (furniture in a room can still exist after the room
has been destroyed). This distinction allows for more complex object classifications that
are based on object compositions. For example, a room in a building can be classified as
master bedroom, children’s room or living room based on the type of furniture objects it
contains. If some of that furniture is removed or new pieces added, then the classifica-
tion might change accordingly.

The second contribution is an abstraction principle called localization [Brodie 86], which
refers to the ability to determine the state of every system object on its own, regardless
of its relations to other objects in the system. This is achieved by means of the object
structure and life cycle concepts. The object structure consists of a set of attributes whose
values can be constrained according to integrity constraints that reside in the object
itself. The object life cycle is defined in terms of the states at which the object can exist,
the events that cause state changes, and the constraints that restrict the succession of
event occurrences [Rolland et al. 92]. This makes the behavior of an object explicit and
localized, and provides a description of the overall system behavior in terms of the
behavior of individual objects. This is different from classical behavioral models, where
the life cycle of a system entity is determined through the operational conditions or
rules that exist within the system as a whole.

This behavioral modularity, coupled with a well defined object structure, led to the third
contribution, which is referred to as design patterns [Gamma et al. 95]. Patterns provide
the link between structural properties and behavioral properties of object compositions.

www.manaraa.com

Phd Thesis - Spring 98 17

The Conceptual Modeling Process Used

They do this by providing the object structure that is most capable of solving a given
design problem. In addition to that, design patterns makes it possible to reuse system
designs at different levels of granularity.

The final contribution is the ability to use objects, at different levels of abstraction, in the
entire system development process, starting from the requirements specification stage.
This ability was demonstrated in the Use Case approach to modeling requirements
[Jacobson et al. 92], which describes the system functionality from the system user per-
spective. Such description includes references to system objects, especially at the inter-
face level, which later develop into detailed object descriptions.

2.4 The Conceptual Modeling Process Used

Many different methodologies can be conducted with the conceptual modeling process.
They have been documented in the Software Engineering literature, such as Object Mod-

FIGURE 3. An example of the three main perspectives of objects in the object-oriented approach

A contains C

B is associated with D

Class_A

attribute_a
attribute_b
attribute_c

Class_B

Class_C

Class_D

Class_A

operation_CreatInstance
operation_DeleteInstance
operation_AddAggregateObject
operation_DeleteAggregateObject
operation_SetAssociation
...

Object_a

Object_c

Object_b

Object_d

call operation ycall operation x

User call operation zcreate object

The Static Perspective

The Behavioral Perspective

The Process Perspective

B inherits from A

Classification X, Y, Z

an instance of C
can be classified as
X, Y, or Z

U
se

r
In

te
rf

ac
e

perform event e

www.manaraa.com

18 Phd Thesis - Spring 98

An Overview of Conceptual Modeling

eling Technique (OMT) [Rumbaugh et al. 91], Object Oriented Software Engineering [Jacob-
son et al. 92], and Software Engineering with Abstractions [Berzins & Luqi 91]. Most
references emphasize the point that these methodologies should not be considered as
“cook books”, but rather as general design and modeling guides to be adapted to differ-
ent modeling situations.

This section describes a conceptual modeling process based on some of these methodol-
ogies as well as the author’s experience. The process is divided into five main steps:
➀ studying the application domain, ➁ defining the information system functionalities
(requirements modeling), ➂ defining the Universe of Discourse (UoD), ➃ defining the
conceptual schema according to a conceptual model, and ➄ verifying and refining the
schema. Once the schema is refined, an implementation model can be developed to
implement the schema in a given computational environment. These five steps –
explained in detail in this section– are presented as the means to achieve the main goal
of this research, which is creating a framework for modeling building design specifica-
tions.

2.4.1 Studying the Application Domain

Defining the information system functionalities requires a substantial amount of
domain knowledge. The modeler therefore has to be familiar with the domain that the
system should support. In order to provide a more wholistic perspective of the applica-
tion domain, this domain knowledge has to be acquired through some knowledge
acquisition process, even if the domain expert happens to be the system modeler.
Knowledge can be acquired through several methods [Rolland et al. 92].

One of these methods is to conduct a study of the application domain by reviewing its
literature and interviewing domain experts as well as observing them while they per-
form their tasks. Such a study is very likely to provide multiple (possibly different)
views of the domain. It is important to realize that these views originate from the per-
sonal experiences that the experts have accumulated over the years and can be tied to
the ways they prefer to perform their work. This means that the conceptual schema that
would be created does not have to map directly to any of these domain views or to one
that encompasses all of them. Instead, the domain views provide the modeler with an
understanding of the domain which makes it possible to create the conceptual schema
that can support the functionalities the information system should provide.

Another way in which knowledge can be acquired is through studying existing infor-
mation systems of the domain, which can be done in three different ways. The first, and
most intuitive, is to study the functionalities that these systems provide and analyze
their effectiveness in supporting the domain. The second is by studying the require-
ments of these systems (usually expressed in a requirements analysis document). This
requires specifications that are well documented and revised to reflect the current state
of system development. It also requires that the specifications include some description
of the functionalities they support; otherwise the modeler will have to infer that link.
Studies have been conducted about ways to support the reuse of system specifications,
such as providing a repository to store reusable system components [Johnson & Feather

www.manaraa.com

Phd Thesis - Spring 98 19

The Conceptual Modeling Process Used

90], and using an “Intelligent Reuse Advisor” to retrieve and customize these compo-
nents according to cognitive models of specifications reuse and analogous reasoning
[Maiden &Sutcliffe 91]. The third way in which existing information systems can be
used to develop new ones is by reverse engineering, which is defined in [Chikofsky & Cross
90] as a process to analyze a subject system to identify its components and their relation-
ships and to create a representation of the system in another form or at a higher level of
abstraction. This leads to recapturing or recreating the system design, then deciphering the
requirements that are actually implemented in the system. The design recapturing stage is sup-
ported by some commercial CASE (computer-aided software engineering) tools such as Rational

Rose by Rational Software Corporation9. However, deciphering the requirements from the recon-
structed design representation is left to the modeler.

2.4.2 Requirements Modeling: Defining the Information System Functionalities

Once the application domain is sufficiently understood, system requirements can be
defined. Although several methods for defining system requirements have been pro-
posed, current software engineering practices and research seem to be converging on
the use case approach for modeling system requirements [Jacobson et al. 92]. The use
case approach defines system requirements in terms of a set of interaction scenarios
called use cases. Each use case is a natural language description of the way the user per-
forms a certain task when using the system. This description specifies a sequence of
events and interactions that take place –during the completion of the task– between the
user and the system interface, and between the system components as well. The
description ends with the completion of that task. A use case can use other use cases as
parts of its events sequence.

The development of use cases start with the main tasks the system should support.
Tasks are then decomposed into sub tasks and so on, until an “acceptable” level of gran-
ularity is achieved. The level of decomposition depends on two main objectives. The
first is that a use case represents a basic task that is clear and simple and does not natu-
rally decompose into sub tasks. The second objective is to maximize the reusability of
use cases to simplify requirements and highlight core system functionalities that pro-
vide support to other higher level ones. As these two objectives can be contradictory, the
acceptable level of granularity is usually achieved after a series of iterations, as is the
case with most design activities. Use cases can be grouped by the type of actor perform-
ing them or by higher level tasks they support. Together, they represent a model of sys-
tem requirements from the user perspective.

The use case approach has six main advantages:

1. It focuses the system development on supporting the tasks the user needs to accom-
plish. This helps reduce the size of the system by eliminating unnecessary functional-
ities and ensures that the tasks to be performed with the system are adequately
supported.

9. URL of Rational Software Corporation: http://www.rational.com, October 97.

www.manaraa.com

20 Phd Thesis - Spring 98

An Overview of Conceptual Modeling

2. The use case document provides the users with a clear description of the system
functionalities which they can evaluate. Once the document is approved, it forms an
informal contract between the system users and developers.

3. It helps define the system interface needed to accomplish the tasks. This is due to the
descriptions of system dynamics included in the use cases, which help the system
designer determine the style of interaction needed to support the user actions.

4. Since use cases contain references to world elements that the user manipulates, they
help determine the Universe of Discourse of the application domain in terms of the
entities needed to accomplish the system tasks, and hence to be modeled.

5. The use case descriptions precede the determination of the objects of interest, which
are taken for granted in other object-oriented methods.

6. It structures the entire development process around the requirements; they become a
thread that integrates all stages from system modeling to testing.

2.4.3 Defining the Universe of Discourse (UoD)

The third step in the conceptual modeling process is defining the UoD, which is the sub-
set of the world to be modeled. The definition of the UoD starts with the set of domain
concepts referenced by use cases. This set is then expanded to include other concepts
needed to support the ones included in the original set. The defined UoD can then be
used to model the conceptual schema.

2.4.4 Schema Modeling

Choosing a conceptual model: Modeling the conceptual schema entails defining sys-
tem entities that represent world objects according to a conceptual model. Object-ori-
ented models provide three perspectives for schema modeling which were described
earlier: structural, dynamic and process. The conceptual model used in this thesis to
support schema modeling combines different techniques:

• Object Modeling Technique (OMT) [Rumbaugh et al. 91] will be used for modeling
structural and behavioral properties of the schema through its object model and
dynamic model representations.

• Interaction diagrams [Jacobson et al. 92] & [Gamma et al. 95] will be used to model
system processes. They will be mainly used as a tool for verifying and testing the
schema, and will be explained in section 2.4.5.

OMT provides a clear and powerful notation for modeling the structural properties of a
schema. It supports all abstraction forms mentioned earlier with the exception of classi-
fication. Its object modeling notation allows for creating a classification taxonomy,
which can be modeled and implemented using a classification framework such as Clas-
sic [Brachman et al. 91].

While OMT supports the modeling of behavioral properties through its object and
dynamic models, its functional model, intended to model system processes, is not as use-
ful as its object or dynamic models (which Rumbaugh himself admits). This is the rea-

www.manaraa.com

Phd Thesis - Spring 98 21

The Conceptual Modeling Process Used

son for using interaction diagrams to model inter-object interactions; this is true in
many of the latest software engineering methodologies such as the Unified Modeling
Language. Object and dynamic models, as well as interaction diagrams, are supported
by various modeling and CASE tools, such as OMTool by Lockheed Martin, and Ratio-
nal Rose by Rational Software Corporation.

Modeling the schema: Schema modeling starts by defining the object types and their
static properties (attributes) that represent the UoD. The structural properties between
objects are inferred from interactions described in the use cases, and modeled as associ-
ations and aggregations. Inheritance can then be used to share and reuse common prop-
erties (both static and dynamic) that exist among the different types of objects.
Classification can be used to create taxonomies of object types based on multiple classi-
fication criteria.

Once the structural properties of the schema are defined, its behavioral properties can
be modeled in terms of the operations that apply to each type of object. These opera-
tions are defined in terms of the information they need to perform their tasks, and the
changes they cause to the state of the object. A dynamic model for each type of object in
the schema can then be created. It defines the changes in the object state (also known as
a description of the object life cycle) as a result of applying every one of its operations.

2.4.5 Verifying and Testing the Schema

After the schema has been created, it can be verified by modeling the interactions
between its objects needed to support each one of the use cases, using interaction dia-
grams. This requires that an interaction diagram be created for every use case to ensure
that the defined schema supports all system functionalities. Interaction diagrams also
help define the type of information that needs to be exchanged between operations, and
verify each operation’s inputs and outputs accordingly.

Testing the schema requires designing a set of test cases aimed at using the schema to
create representations of building design requirements for actual buildings. This is most
suitably done using a prototype of the proposed system- implemented using a pro-
gramming language, such as C++ [Stroustrup 91], or within the programming environ-
ment of a database management system-to facilitate the testing procedure. Although it
can still be done manually if a prototype proves too costly to create for the purpose of
testing and evaluating the schema. However, it is the author’s opinion that testing pro-
cedures have to be conducted on a system prototype before a reliable schema design is
reached.

www.manaraa.com

22 Phd Thesis - Spring 98

An Overview of Conceptual Modeling

www.manaraa.com

Phd Thesis - Spring 98 23

Architectural Programming in Existing Practices

CHAPTER 3

A Study of the Application Domain

This chapter provides a study of the application domain, which is the initial step for cre-
ating a conceptual schema that supports the generation and manipulation of building
design requirements. The study consists of two main parts: a survey of architectural
programming practices, and a study of computational tools that attempt to support
these practices.

3.1 Architectural Programming in Existing Practices

A study of architectural programming practices was conducted with my participation
[Akin et. al., 95]. This involved interviewing a number of architectural firms renowned
for their AP practices. It indicated that there are two principal roles of AP in practice.
The first is providing a framework for architectural design that manages design context,
requirements and criteria for the different phases of building design. It regards the
architectural program as a reservoir of design information that feeds other stages of
design with design data. This role is characterized by the following aspects [Akin et. al.,
95]:

• Program documentation results from a process of negotiation that settles disputes
regarding the performance requirements desirable in the resulting architectural
designs.

• The architectural program is an informal (and in some cases formal) “contract”
between the client and the designer that tracks the scope and budget of the project
and any subsequent changes to them.

• The program serves as a complete inventory of design requirements and criteria of
design evaluation.

• Documenting the program is not a one-time task, but a dynamic one that keeps track
of the evolving and changing AP throughout the design process.

The other role of AP in practice regards the program as a utility for designers. The pro-
gram becomes a step in the early stages of design that merely facilitates the transfer of
user needs into design entities. Once this is done, the discourse about performance
requirements is considered only within the physical design domain, with little or no

www.manaraa.com

24 Phd Thesis - Spring 98

A Study of the Application Domain

need to return to the program. The main assumptions underlying this role are the fol-
lowing:

• The program becomes rapidly outdated, and the design drawings are the most reli-
able source of information, which includes both design and client requirements.

• The program is just a convenient stage in translating the user needs into design
objects.

• Documentation of the program is a routine task and, in most cases, performed in a
way that does not consider the reusability of the program, or parts of it, in future
projects.

• Documentation of the program is a one-time task; thus, it becomes fixed in time,
which is the reason why it becomes outdated.

The study also indicated that practice varies in terms of the framework vs. the utility
models of AP. However, we also found a number of common characteristics. First we
came across attempts to use past programs in developing new ones. However, many
limitations and difficulties adapting past programs to new situations is fought with,
particularly because of the manual methods employed in doing so, and the format in
which programs exist. Our study also showed that the program takes into account cli-
ent’s standards and codes, which are as critical to the design as the locally enforced
institutional building codes and ordinances. However, the values and resources allo-
cated to programming not only vary from firm to firm, but from project to project within
the same firm. It is common that the client and the nature of the project determine the
priority of the program. Finally, the study concluded that developing the architectural
program is a task of a team with diverse areas of expertise, and that there was no con-
sensus about the use of visual design representation in the program.

Our study also helped us describe the architectural programming process in four steps:

1. Specifying all design requirements: This is the most variable and open-ended step of
program development. All aspects of the design problem should be clearly defined.
These include site, organizational, code ordinance and budgetary aspects.

2. Deriving from these requirements the functional description of the architectural design prob-
lem: The specifications collected and defined in the previous step are then translated
into a more precise format, which includes the functional and area components of the
program, as well as the spatial, mechanical and equipment needs associated with
these components.

3. Documentation of the program: This is done in such a way that design can proceed,
based on the requirements and functional descriptions developed in the previous
step.

4. Updating the program to include any changes made during the course of design: This is a
step that varies in practice; it usually takes place in the framework model, while the
opposite is true in case of the utility model.

www.manaraa.com

Phd Thesis - Spring 98 25

A Study of Computer-Aided Architectural Programming Tools

3.2 A Study of Computer-Aided Architectural Programming Tools

3.2.1 An Overview of Commercial Systems

Currently, a number of computer-based systems marginally support the AP process.
Among these systems are Intergraph’s Project Programmer with Project Optimizer (1991),
which provides some space planning capabilities, such as space optimization using
stacking and blocking diagrams, and the SARA Facility Development System (1994),
which provides cost estimates based on average cost databases in addition to stacking
and blocking diagrams. Some firms we interviewed have developed their own pro-
gramming applications generally based on spreadsheets to assist in the numerical
aspects of the program, such as area calculations. There also exist some computer-based
tools for facilities management, such as AutoDesks’s AutoFM, but they provide only
building management and maintenance capabilities that include space planning based
on stacking and blocking.

Recently, another software system named SABA10 –for Stacking And Blocking Algo-
rithm– was ported from main frames to the MS Windows environment. This system
provides three views for creating and manipulating architectural programs. The first
view is a bubble diagram view through which building elements can be entered as
spaces with fixed areas. The system allows for expressing adjacency relationships
between entities using an adjacency matrix. Adjacencies are the only relationship that
can be expressed in this system and are used as a basis for minimizing costs. It therefore
uses an objective function to indicate the “preferred” locations for placing spaces into
floors in the stacking view, and next to each other within the same floor in the blocking
view. When space assignments are done, the system provides reports, such as a break
down of spaces by floors or zones. The main algorithm through which space assign-
ments are determined is based on the quadratic assignment problem, an optimization
problem in which functional units are assigned to locations so that the cost of moving
people and equipment between modules is minimized [Koopmans & Beckman 57];
[Liggett 80].

In general, computer applications in the area of architectural programming consist of
one, or a combination, of the following elements and techniques:

1. Computerized libraries of building elements and equipment inventories that can be
selected and used in the architectural programming process.

2. Cost estimation techniques based on cost databases11.
3. Space planning using stacking and blocking algorithms.

10. URL for SABA: “http://www.techexpo.com/WWW/saba”, March 97.
11. Our surveys in the SEED-Pro team indicated that architects rarely use average cost databases

in doing cost analysis and estimations. Instead they rely on their past experience given the
situation at hand as well as the “fresh” localized information they collect in that respect.

www.manaraa.com

26 Phd Thesis - Spring 98

A Study of the Application Domain

3.2.2 Problems and Shortcomings of Existing Tools

Most existing tools provide only marginal support for selected programming activities,
such as stacking and blocking of spaces. They are not integrated with other design sys-
tems and therefore, are not widely used in practice. Most of these tools export their
information either as text reports or as a simple description of geometry that can be
imported into drafting tools such as AutoCAD or MicroStation. They also do not pro-
vide any support to handle the non-spatial aspects of AP information, such as perfor-
mance criteria and preferred material properties.

The main reason for the shortcomings of these tools is their lack of robust representa-
tions of architectural programming information. Their representations consist of spaces
which can be assigned to floors and zones. These spaces have two attributes: area and
adjacency relations to other spaces, while other types of attributes and relations are not
part of these representations. It is very likely that only these two attributes have been
selected because they are required by the stacking and blocking algorithms. These algo-
rithms are used to assign spaces to floors and design floor layouts by minimizing the
travel cost between spaces, which appears to be the functionality these systems were
actually developed to provide. However, even that functionality is not adequately sup-
ported by these systems. The reason is that traffic flow between spaces is neither the
only nor the most important criterion for designing layouts. This is indicated in [Fenves
et al. 94], p. 43:

Layouts must respond to a multitude of concerns, from adjacencies and proximities
through visibility and view to more formal aspects of order and organization, and
these generally competing concerns may even contradict each other. The quadratic
assignment formulation is unattractive for building design because, despite the severe
restrictions under which it operates, the computation of an “optimal” assignment
remains costly and has led to the employment of more heuristic approaches in prac-
tice.

The inadequacy of the representations adopted by these systems has decreased their
reliability and limited their use in practice. It has also resulted in the use of mechanisms
that do not render adequate support and reliable results for the functionalities they pro-
vide. For example, the SARA Facility Development Systems provides estimates on cost
using average cost databases, which are known to be unreliable. This makes it unlikely
that professional firms will use a system that automates a method they don’t use in the
first place. In that respect, I argue that a more sophisticated cost analysis system will
have to utilize a rich representation of architectural programming information. Like-
wise, other early design functions, such as negotiating with clients, task scheduling, fea-
sibility studies, and the like can benefit from comprehensive AP support.

3.2.3 Research Systems: SEED-Pro

Until recently, research on computer-aided architectural programming (CAAP) has not
provided any functionalities beyond what the surveyed commercial systems offered.
However, in 1993 researches at the Engineering Research Design Center (EDRC) and the

www.manaraa.com

Phd Thesis - Spring 98 27

A Study of Computer-Aided Architectural Programming Tools

School of Architecture at Carnegie Mellon University started the SEED project, which
provides a software environment to support the early phases of building design. The
overall goal of SEED is to provide support for the preliminary design of buildings in all
aspects that can gain from computational support. This includes using computers for
the generation of designs to achieve a “rapid generation of computable design representations
describing conceptual design alternatives and variants of such alternatives with a suffi-
cient level of detail that enables sophisticated evaluation tools to receive all of the
needed input data from the representation” [Flemming & Woodbury 95]. SEED intends
to encourage the exploratory mode of designing by making it easy for designers to gen-
erate and iterate through design versions and to pursue conceptual alternatives in par-
allel.

SEED features an open-ended modular architecture, where each module provides sup-
port for a design activity that takes place in early design stages. Each module consists of
five main components: input, specification, generation, evaluation and output. These
are supported by a database to store and retrieve information, as well as a user interface
to support the interaction with designers [Figure 4].

To support design generation, a well-defined set of explicit requirements is needed. The
prototypical version of SEED-Pro, the architectural programming module of SEED, is
designed with the intention to support the modeling and generation of design require-
ments in a form that is usable by other modules of SEED. It has the following objectives
[Akin et. al., 95]:

FIGURE 4. Generic Architecture of a SEED module [Flemming & Woodbury 95].

Interface
Input

interface

Input

Designer

Output

Database

Specification
interface

Generation
interface

Evaluation
interface

Output
interface

Specification Generation Evaluation

www.manaraa.com

28 Phd Thesis - Spring 98

A Study of the Application Domain

1. Provide means of storing and handling all aspects of AP information including site
characteristics, codes, client preferences, and different performance criteria and
requirements.

2. Ensure the use of criteria established during the programming phase as a basis of
design.

3. Enable the integration of architectural programming and architectural design as a
seamless process.

4. Maintain a database of reasons employed in making programming decisions, and
improving the computability of AP information by allowing non-numerical types of
reasoning not currently supported by the existing medium of representation (text for
non-numeric and spreadsheets for numeric data).

5. Achieve a flexible way of interaction that does not tie the designer to a particular
model of AP.

6. Enable the use of past programs and programmatic experience in future projects.

Through the sharing of domain concepts, SEED-Pro aims to provide a seamless interac-
tion with all of the other modules of SEED and share data across these modules. SEED-
Pro positions itself as a good candidate for maintaining a robust record of design
requirements, criteria, and constraints to be used persistently in SEED. SEED-Pro is
intended to support both the framework model of AP by providing all of the features it
requires, as well as the utility model of AP by allowing users to pick and chose any com-
bination of AP features that they like to have.

By providing the outputs that the other SEED modules require as input and through the
shared domain object classes and libraries in SEED, SEED-Pro complements the basic
steps of SEED: problem specification (SEED-Pro), spatial layout design (SEED-Layout)
and construction specification (SEED-Config). SEED-Pro converts parts of its input into
representations used by other modules of SEED, and accepts its input from three main
sources:

1. Direct user input through an interactive graphical user interface which allows the
user to input and manipulate the AP information represented in SEED-Pro as specifi-
cation units [Figure 5]. Providing an effective user interface is a major research area
in the SEED project.

2. Reading information stored in the SEED database in the form of Projects. These can
be used to create a new set of project specifications or modify an existing one.

3. Interfacing with the Standards Processor [Garret et. al., 95] to acquire codes and stan-
dards to which the design requirements should conform. Interfacing with the Stan-
dards Processor provides an external evaluation mechanism, which can be used for
compliance checking of the AP against a specific standard, or for compliant genera-
tion, which will help the designer to retrieve applicable provisions or constraints, or
both, and incorporate them into the generation of design requirements. This will be
helpful when an AP for a new building type is being generated and the designer is
not familiar with the codes or standards. This process can also be referred to as a kind
of guided generation of design requirements because the idea is to generate a pro-
gram that is compliant with the standards. Other external analysis, simulation and

www.manaraa.com

Phd Thesis - Spring 98 29

A Study of Computer-Aided Architectural Programming Tools

evaluation software can, in principle be integrated as well (e.g., a well established
cost estimator or scheduler).

The SEED-Pro conceptual schema:

The Project is the main construct in SEED-Pro. It is an object that forms the super con-
tainer for all the different types of objects in the SEED-Pro object model [Figure 6]. A
project consists of a set of design specifications which are defined as a collection of design
intentions and criteria to be maintained by the architectural program. These design
specifications serve as the front end to SEED-Pro and provide it with a consistent and
persistent record of specification categories.

Five categories of these specifications have been identified so far: Building, Site, Budget,
Implementation Schedule and Client Profile. Each of these is composed of a set of speci-
fication units. These specifications categories, along with the mechanisms needed to cre-
ate and manipulate them, constitute the specification component of SEED-Pro. Building

FIGURE 5. User input windows in SEED-Pro

www.manaraa.com

30 Phd Thesis - Spring 98

A Study of the Application Domain

specifications provide a description of the design requirements for each building in the
project. Site specifications contain a site description which includes existing site ele-
ments as well as future ones, such as the building footprint. Implementation Schedule
specifications contain a description of the desired implementation schedule. Finally, the
Client Profile specifications maintain a database of clients involved with each project.
Each client record in the database contains a description of the client profile and prefer-
ences as well as contact people within each client organization.

The specification component allows for multiple architectural programming alterna-
tives that satisfy the same set of specifications; it also facilitates case matching and
retrieval. It captures the rationale and the intentions of the design criteria, thus provid-
ing a basis for functional reasoning by being able to trace a design decision to the speci-
fications that initially triggered it.

A specification unit (SU) is the basic building block for representing specifications in
SEED-Pro. It embraces an object-oriented representation that consists of the SU and
Component Specifications objects. A SU object represents an organizational entity in the
building, which can correspond either to a physical space or a room, or to an abstract
operational concept, such as a department or a section. SUs can be recursively aggre-
gated to form the organizational and functional hierarchies of the building as shown by
the link “contains” in [Figure 7]. A SU can be associated with a number of component
specifications objects, each of which describes desired performance requirements and
design criteria of the corresponding SU. The list of components, shown in [Figure 7], is
open-ended and allows the system designer to add additional component types as
needed. Once the desired attributes of an organizational entity are specified, that entity
can serve as input to the generation mechanism within SEED-Pro that develops the AP
needed by another design or evaluation module.

FIGURE 6. The SEED-Pro Project structure using the OMT notation.

SEED-ProProject

SiteSpecs ClientProfileSpecsBuildingSpecs

EvaluationSpecifications Generation Output

consists of

consists of

FU

BudgetSpecs ImplementationSheduleSpecs

SpatialProgram

SEED-Layout

PartialInput
Format

ExternalDesign/
EvaluationModule

generates

input inputconsists of

feedbackfeedback

SEED-Pro

SEED-Pro Outputs

www.manaraa.com

Phd Thesis - Spring 98 31

A Study of Computer-Aided Architectural Programming Tools

One such mechanism is the generator of the spatial requirements in the form of func-
tional units (FUs). These are objects that contain the spatial requirements of spaces. They
can be structured hierarchically to form a spatial composition that describes the build-
ing in terms of floors, zones and rooms etc. Spatial information that resides in SUs is
captured and “packaged” into functional unit hierarchies, which constitute the input
needed by the layout module of SEED.

Another generation mechanism is the specifier of thermal conditions as partial input to
a thermal design module that interfaces with SEED. In addition to these generation
mechanisms, the structured representation of SEED-Pro allows for generating an archi-
tectural programing document from the specifications when a written document is
needed. Such a document is typically required for contract negotiations.

The first prototype of SEED-Pro is now running on Unix, Microsoft Windows 95 and NT
platforms. It supports the functionalities needed to:

• create a representation of an architectural program that consists of specification units
and the set of component specifications shown in [Figure 7],

• manually create the spatial requirements expressed as functional units,

• edit the spatial configuration of buildings and specify relations among functional
units, such as adjacency, minimum distance and accessibility, and

FIGURE 7. The Specifications Object Model using the OMT notation.

SpecificationUnit ComponentSpecifications

PlumbingSpecs

StructuralSpecsEnclosureSpecsRoofSpecs

CodeSpecs

Organizational
Specs

Acoustics
Specs

Electrical
Specs

ThermalDesign
Specs

Spatial
Specs

Lighting
Specs

InteriorFinishes
Specs

Personnel
Specscontains

BuildingSpecs

consists of

associated with

www.manaraa.com

32 Phd Thesis - Spring 98

A Study of the Application Domain

• export the spatial configuration to the layout design module (SEED-Layout) either
through the database in the fully networked version, or a common file format in the
“Lite” version designed to run on a desktop machine.

3.3 Achieving a Flexible Framework for Modeling Design
Requirements

The current SEED-Pro schema provides flexibility in terms of structuring and manipu-
lating AP information, representing existing as well as future building elements and
accommodating different building types. However, it provides little support for chang-
ing the set of design specifications in terms of adding new types of specifications (such
as mechanical systems and equipment) or selecting subsets of specifications with which
to work. This requires changes in the user interface, which reflects the model changes to
the user, and the generation mechanisms that are affected by these changes. As the
schema stands now, the addition of new types of specifications requires some program-
ming effort and cannot be achieved at run-time by the system users.

The complexity of modeling design requirements for buildings arises mainly from the
absence of a formal way to define such requirements. Firms specializing in architectural
programming, such as HOK, have adopted or created models for defining design
requirements. In general, the ways in which these models define design requirements
are often grouped into two main styles [Kumlin 95]. The first is the prescriptive style
through which design requirements are specified in terms of properties of materials and
building systems based on standards or on the designer’s experience. The second in the
performance style, by which design requirements are specified in terms of performance
criteria, such as required air temperature, illuminance, activities to be performed and so
on.

Adopting one style over the other is most likely to result in an inadequate model to
define design requirements. Different aspects of design requirements are better speci-
fied in one style versus the other. It is often the case that both styles are needed for dif-
ferent analysis purposes, and it is sometimes hard to determine whether certain design
requirements are prescriptive or performance-based. For example, defining the R-value
of a wall can be considered as a performance criterion or alternatively as prescriptive
material property.

www.manaraa.com

Phd Thesis - Spring 98 33

Modeling Principles and Considerations

CHAPTER 4

A Computable Representation for
Modeling Building Design Requirements

This chapter provides a description of the criteria used to design the computable repre-
sentation and an analysis of its features.

4.1 Modeling Principles and Considerations

Given the background and the study presented in chapters 1 and 3, a computable repre-
sentation for modeling building design requirements needs to fulfil two main goals. The
first is to create a repository of design requirements that contains all the information the
designer needs to specify. The second goal is to support extracting information from
that repository and communicating it to the design systems that collaborate on the pro-
cess of producing a building design.

To achieve the first goal, the computable representation should support the definition of
multiple conceptual schemata, each representing a different way of describing design
specifications. In essence, these conceptual schemata are product models that provide the
categories of information needed to create a set of design requirements for a certain
product. An example of a product model is one that represents the AIA specifications,
the Army Design Guidelines or any firm-specific way of describing design require-
ments. Such a model provides the information semantics that can be used to represent
design requirements for a given building. The selection of a product model to use
depends on the design systems that need to extract information from these require-
ments. For example, SEED-Pro, the architectural programming research system sur-
veyed in Chapter 3, was required to interface with SEED-Layout, which is a software
module within the SEED system that can generate floor layouts from a given set of spa-
tial design requirements. Such a requirement means that these spatial design require-
ments had to be either directly represented in, or can be inferred from the SEED-Pro
product model, in order to create the input needed by SEED-Layout. The SEED-Layout
input format is represented within SEED-Pro to allow for structuring it in a way that
conforms to the measures of well formedness required by SEED-Layout.

The need to represent multiple product models within the computerized representation
calls for having a different perspective on the role of a conceptual schema within an

www.manaraa.com

34 Phd Thesis - Spring 98

A Computable Representation for Modeling Building Design Requirements

information system. This perspective differs from all three prespectives discussed in
section 2.2, in that it allows a single software module to contain multiple
schemata[Figure 8]. Each schema represents a product model that either supports a cer-
tain style of describing design requirements, or conforms to the input needed by a
design system in a certain environment.

Providing information to other design systems requires a series of generation mecha-
nisms, each specializing in creating the output needed by a specific design system. Once
that output is created, it often needs to be structured in a way that is acceptable by the
design system for which it was generated. For example, SEED-Layout requires its input
to be in the form of a hierarchy of spatial functional units which conforms to certain
rules of well-formedness. Such rules concern attribute values within each functional
unit (e.g., the minimum area should be at least equal to the square of the minimum
width), as well as rules in composing the hierarchy itself (e.g., a functional unit repre-
senting a room cannot contain one that represents a floor). This means that the comput-
able representation should be able to handle the structuring of these various outputs
independently from the way the repository of requirements is structured.

Therefore, the principal requirements for a computable representation for modeling
building design requirements is the ability to:

FIGURE 8. Multiple conceptual schemata representing different product models

SEED Database

map to and from shared schema

SEED Shared Conceptual Schema

SEED-Layout

SEED-Layout

Conceptual Schema
SEED-Config

SEED-Config

Conceptual Schema

SP II

SP II: Output Schemata

 SEED Schema
SP II

 Schema “Y” . . .

Design System “Y” Conceptual Schema

Requirements Description Style “A”

SP II
 Schema “B”

SP II
 Schema “A” . . .

SP II: Input Schemata

Design Environment “X” Database

SP II: Requirements
Modeling System

maps to

maps to

maps tomaps to

represents

maps to

www.manaraa.com

Phd Thesis - Spring 98 35

Approaches to Modeling Design Requirements

• represent, at a minimum, the type of information needed by all design systems inter-
facing with such a representation,

• support the generation of data needed by each design system, and

• allow the structuring and refinement of the generated data to meet the standards set
by each design system.

These principal requirements have been expanded into a detailed requirements analysis
using use cases [Jacobson et al. 92], which is included in Appendix 1.

4.2 Approaches to Modeling Design Requirements

Modeling design requirements could be achieved using three different approaches. The
first approach is to model design requirements after an industry standard (product
model), such as the AIA specifications or the Sweet’s catalog classification. In this case,
the product model used will be hard-coded into the system, and the design require-
ments generated using such a system can only use the type of information provided by
the product model used. Such an approach is relatively easy to accomplish and is likely
to be used by people and firms who adopt the standard on which the model is based. It
can be successful when the interfacing design systems are well defined, as it was the
case with SEED-Pro. However, this causes the system to be restricted to a single stan-
dard and does not achieve the flexibility needed to accommodate the volatile nature of
information categories in the domain, or the ability to cater to new design systems that
were not envisioned initially when the system was being developed.

The second approach is to provide a product model that encompasses all possible
industry standards—a union of all the existing standards and classifications. In this
case, the model will not be restricted to a single standard and would cater to a wider
group of practitioners than would the model described in the first approach. However,
this approach would prove to be impractical due to the possible contradictions that can
exist between standards, and the very large number of such conventions used in the
field. Each specification writer in the field has his/her own set of categories and conven-
tions. Most standards are based on some criteria that can differ from the ones on which
other standards and classifications are based, which increases the possibility of conflicts
in the way some design requirements are modeled. In addition, this approach does not
address augmenting existing standards and classifications and could prove to be inflex-
ible as well.

The third approach is to provide a flexible framework to model design requirements
according to any standard or classification. This framework is intended to be adaptable
in a way similar to software frameworks, such as ET++ [Weinand et al. 95]. A software
framework is a set of reusable components that can be used to create applications for a
certain domain.

Similarly, a framework for modeling and manipulating design requirements provides
some overall organizing concepts to model design requirements. This framework, con-

www.manaraa.com

36 Phd Thesis - Spring 98

A Computable Representation for Modeling Building Design Requirements

tains adaptable components to accommodate different ways of describing design
requirements. This approach should be more flexible than the previous two approaches
because flexibility is addressed as a design requirement from the start. It enables the
addition of new specifications categories at run-time, and could extend even beyond
building design, providing support for modeling design requirements for any engineer-
ing artifact that can be described using its overall organizing structure.

I decided to adopt the framework approach for creating a computable model for build-
ing design requirements. The reason for that decision is its potential to fulfil the follow-
ing requirements:

1. The computable model should not be tied to a specific model of defining design
requirements.

2. Support an open-ended architecture where new models of specifications can be cre-
ated to accommodate new design systems that need to interface with the model.

3. Support experimenting with different models and styles of specifications.
4. Support creating mappings between different models of specifications to generate

system-specific outputs from the design requirements repository.
5. Creating models of specifications and mapping techniques at run-time using the sys-

tem interface. This enables domain experts to create these models and mapping tech-
niques without having to reprogram the system.

4.3 Features of a Design Requirements Modeling Framework

The framework created in the course of this research was designed and built to support
the functionalities listed in the previous section. Its design features can be grouped into
three sets of features [Figure 9]:

• creating building design requirements,

• creating product models, and

• creating and applying generation mechanisms to map information from one product
model to another.

Each of these three sets of features is explained in detail in this section.

4.3.1 Building Design Requirements

Creating design requirements entails means to represent and structure the design enti-
ties described by these requirements. This framework adopts a hierarchical structure to
represent the design entities. One of the reasons for selecting a strict hierarchy is that it
is easier to maintain than a lattice structure. A node in a hierarchy will have to maintain
just two references: one to its container and another to its list of constituents. On the
other hand, a lattice node needs to maintain a reference to every node to which it relates.
Updating these references when a node is deleted is more difficult in a lattice structure
than a in a hierarchy. The other reason is that the study conducted in Chapter 3 did not

www.manaraa.com

Phd Thesis - Spring 98 37

Features of a Design Requirements Modeling Framework

show cases when a lattice structure is needed. The hierarchy is composed of specification
units similar to those of SEED-Pro (section 3.2). However, the set of attributes attached
to each unit is not fixed, as it is the case with SEED-Pro. Instead, it is defined according
to the product model it uses. This enables the use of specification units to create design
requirements based on any product model created by the framework.

A specification unit (SU) is the basic building block for representing specifications. A SU
object represents an organizational entity in the design which can correspond either to a
physical space or a room, or to an abstract operational concept, such as a department or
a section. SUs can be recursively aggregated to form the organizational and functional
hierarchies of the artifact being designed. A SU can be associated with the categories of
information supplied by the product model it uses.

Using specification units, the designer can create models of design requirements and
generate outputs needed by systems which interface with the framework. These out-
puts are also composed of specification units which use a product model designed to
match the type of information needed by the interfacing system. This means that the
input and output specification units will have an entirely different set of attributes, clas-
sifications and relationships, depending on the product model each group of specifica-
tion units uses.

4.3.2 Product Models

Product models are used in the context of this framework to provide the information
semantics used to model design requirements. Creating models of specifications
requires the ability to represent the different types of information that exist in such
models. The study presented in Chapter 3 indicates that these models of specifications
can be represented using three categories of information. These categories are static
attributes, classifications and relationships.

FIGURE 9. A conceptual framework to support modeling design requirements

Product Model (A)
uses

Product Model (B)

Conceptual Framework

Design Requirements

Generation
Mechanism (α)

.

.

Description (x)

Design Requirements
 Description

maps

uses

generates

.

.

Modeler: preates product models
Designer: creates design requirements

 Customized for
Design System (y)

using product models, and generates
customized outputs using generation
mechanisms

and generation mechanisms

www.manaraa.com

38 Phd Thesis - Spring 98

A Computable Representation for Modeling Building Design Requirements

Static attributes are attributes for representing information which is specific to each SU.
They can be grouped into sets where each set contains a collection of logically related
attributes, such as a set of spatial attributes for specifying area, length, orientation and
width requirements of a particular SU. The type of information represented by these
attributes can be numeric, textual, enumerated or boolean. Numeric attributes contain
information that can be expressed as numbers (integers or floating point numbers). An
example is the number of employees associated with a certain SU12, its spatial area or
the desired sound level. Textual attributes handle information that needs to be
expressed in plain text, such as a description of activities related to a SU, or any addi-
tional comments the designer needs to include in the design requirements. Enumerated
attributes can represent types of information where only a predefined discrete set of val-
ues is allowed. An example is orientation which can only have values such as east, south-
east, south, and so on13. Finally, boolean attributes provide a special case of enumerated
attributes when the enumerated values are either “true” (yes) or “false” (no).

The framework allows for the creation of any number of these types of attributes as part
of a product model. However, it does not provide means to express dependencies which
we know do exist between them. This is an issue which is worth investigating, but
needs to be studied in the context of possible applications and can be a subject of a
future research effort.

Classifications are entities which can be used to attach typological information to a SU
according to certain criteria. For example, under a space usage criterion, a SU can be clas-
sified as an office, a meeting room or a classroom. The framework allows for the creation of
any number of these classification categories (or groups), each containing a set of classi-
fiers which the user defined as well. A SU can have only one classification from each cat-
egory, but can have multiple classifications as long as each belong to a different
category. This feature implies that classifier categories have to be mutually exclusive.
Assigning a classifier from a certain category to a SU should not prevent assigning
another classifier belonging to another category to the same SU or invalidate any pervi-
ous assignments. The issue of classification dependencies can be a future research direc-
tion as well.

These classifications are often used by the systems which interface with the framework.
SEED-Layout, for example, requires an input of spatial functional units (section 3.2)
defined as rooms, zones, floors and so on. However, classifications have two purposes
within the framework context. The first is to provide rules of composition to maintain
the integrity of the SU hierarchies being created. These rules of composition specify the
permissible classifications for the container and constituents of a SU classified in a cer-
tain way. For example, a SU classified as an office is not allowed to contain another of the
same classification but can contain one classified as a private bathroom. The framework
allows for specifying these constraints for every classifier being created. These con-

12. Representing an organizational entity.
13. If orientation needs to be represented as a continuous scale from 0 to 360 degrees, a numeric

attribute should be used instead.

www.manaraa.com

Phd Thesis - Spring 98 39

Features of a Design Requirements Modeling Framework

straints do not have to be bound by the classification criteria or group in which a classi-
fier is defined; they can refer to classifiers belonging to other groups as well. The second
purpose for classifications within the framework context is to provide specialized gen-
eration mechanisms, which only apply to specifications units that belong to a certain
classification. This property is explained in detail in section 4.3.3.

Relations bind two specification units with a qualified relationship. The meaning of the
relationship is determined by the type to which it belongs. The framework allows for the
definition of any number of relationship types within a product model. These relationship
types determine the kinds of relationships which can be specified between specification
units that use a certain product model. An example of such a relationship type is adja-
cency, which defines a relationship that requires the spatial representation of two speci-
fication units to share a certain edge overlap.

4.3.3 Generation (mapping) Mechanisms

Generation mechanisms are needed to create the outputs of hierarchically organized
data needed by systems which interface with the framework. Generation mechanisms
are represented in the framework as a set of rules (created by system users) which spec-
ify the basis on which the attribute values, classifications and relationships of the output
units are set, and how many output units to create from a single input unit14. A genera-
tion mechanism stores these rules and the two product models on which they apply.
One of these product models is considered as the input model of design requirements
and the other as the output model needed by a certain design system. Once a SU hierar-
chy is defined according to the input model, the appropriate generation mechanism can
be applied to create an output of the desired type. A generation mechanism generates
an unstructured list of output units from a given input SU hierarchy15. The user can
then structure this list into a hierarchy if needed, or change the attribute values, classifi-
cations, or relationships generated by the mechanism used.

The framework allows for the definition of two sets of generation rules or mappings: a
default set which applies to all specification units on the input side, and a classification-
based set which applies only to units with a certain classification. For example, an input
unit classified as a bathroom uses the bathroom classification mapping rules to create
output units. In doing that, the number of the output units are determined by a formula
which divides the estimated maximum number of people (during peak usage) by the
maximum number of stalls allowed per bathroom unit, multiplied by a certain factor.
On the other hand, an input unit classified as a private office uses the default mapping
rules which determine the number of output units as the number of people multiplied

14. A form of generation where several input units collaborate on creating one or more output
units may be needed. This is an issue that has not been addressed within the context of this
research, but could be studied in a future research effort.

15. Translating the structure of the information from one product model to another is being
addressed in a parallel research effort by another student in School of Architecture at Carn-
egie Mellon University.

www.manaraa.com

40 Phd Thesis - Spring 98

A Computable Representation for Modeling Building Design Requirements

by the area per person, unless a different mapping for the private office classification
exists. To support such a scenario, the framework provides mappings for three catego-
ries of information: attributes, classifications, and relationships.

Attribute mappings provide means to set an attribute value for a newly generated SU
based on the value of one or more attributes of the input SU. Such a mapping can be
either direct or indirect. Direct mapping is the case when the value of an input unit
attribute is transferred directly to an output unit attribute of the same type. Such is the
case when the name of the input unit is copied directly to the name attribute of the out-
put unit. Indirect mapping allows for using several attributes of the input SU to calcu-
late the value of an output SU attribute. This type of mapping works only for numeric
attributes (integer or floating point attributes), which means that the attributes of the
input SU taking part in that mapping and the attribute of the output SU being set, all
have to be numeric.

Indirect mapping is done using a formula which the user creates. The elements of the
formula are attribute names, numbers and the mathematical operators “+” (for addi-
tion), “-” for subtraction, “*” for multiplication, and “/” for division. A formula can con-
tain parenthesis to provide scoping of calculations. In addition to these elements, a
formula can contain a special symbol which refers to the number of the output units
being generated from an input SU. The reason for that symbol is that some calculations,
such as area, can be based on the number of generated units. The designer might want
to have the input unit acting as a specifier of an activity which requires its overall area to
be divided by the number of output units generated. When the special symbol is
included in a formula, the system retrieves the number of output units and uses that in
the calculation specified by the user.

Classification mapping performs two functions. The first is to set the classifications of
the output units according to that of the input unit from which they were generated. An
example is creating output units classified as rooms from input units classified as private
offices. The second function is to provide specialized attribute mappings for input units
of a certain classification. The framework uses these specialized attribute mappings
whenever the classification mapping within which they are contained is applicable. If a
classification mapping does not contain any specialized mappings, it performs the type
mapping (e. g., private office to room) then uses the default mappings for mapping
attributes. The specialized mappings are regular attribute mappings that are only acces-
sible through a classification mapping mechanism. In addition, classification mapping
provides means to specify the number of output units to be generated using the same
type of formula described earlier.

Relation mapping creates relationships between output units when relationships exist
between their corresponding input units. Relationships are mapped after output units
are generated. The system finds whether the input unit has relationships with other
units in the input model. If it finds relationships, it checks if the units that form the other
part of the relationship have output units generated, and creates relationships of the
type specified by the mapping which connects the units generated by input units to

www.manaraa.com

Phd Thesis - Spring 98 41

Features of a Design Requirements Modeling Framework

each other. Mapping relationships are optional; the user can specify whether relation-
ships should be mapped or not.

www.manaraa.com

42 Phd Thesis - Spring 98

A Computable Representation for Modeling Building Design Requirements

www.manaraa.com

Phd Thesis - Spring 98 43

Framework Design

CHAPTER 5

A Framework for Modeling and
Manipulating Design Requirements

In the previous chapter, I presented a model for modeling and manipulating design
requirements. It is based on the idea of a conceptual framework which consists of a
number of concepts that can be used to structure design requirements based on different
product models, and to generate specialized inputs for various design systems. This
chapter describes the implementation of a software framework which realizes that
model for the purpose of creating design requirements.

The software framework is designed and implemented as an object-oriented system. Its
design and implementation concepts are described in this chapter using metapatterns
[Pree 95] whenever suitable. Design metapatterns provide a way to capture and
describe the design of a software framework on an abstraction level higher than the
underlying programming language. I end the chapter by expressing the features of the
framework that support the needed flexibility, which has been already been described
in Chapter 4.

5.1 Framework Design

The design requirements modeling framework is a collection of software components
that provide the infrastructure and mechanisms needed to create models of design
requirements. It implements and realizes the idea of the framework, described in
Chapter 4 as a running system with a graphical user interface. There are two main
design objectives in developing the framework. The first is to provide the degree of flex-
ibility needed to create and manipulate design requirements, define product models
and generation mechanisms, and structure generated outputs independently from the
design requirements description. The other objective is to be able to perform all these
tasks without the need to re-program and re-compile the system. These objectives are
accomplished by the implementation described in this chapter.

www.manaraa.com

44 Phd Thesis - Spring 98

A Framework for Modeling and Manipulating Design Requirements

5.1.1 Overview

The framework design consists of three interconnected object models. An object model
to support the ➀ definition of product models, one for ➁ creating generation mechanisms
and another to ➂ create and manipulate design requirements. In addition to these three
models, which all support domain operations, the framework contains another object
model which ➃ provides a graphical user interface for using the framework. The design
of the framework is modeled according to the model-view-controller (MVC) concept
[Krasner et al. 88], where the domain and the interface are two separate entities. Inter-
face elements maintain direct connections to the domain objects they represent to allow
user manipulation. On the other hand, domain objects maintain indirect relationships to
their corresponding interface objects to provide them with “change” notifications and
updates [Figure 10]. This indirect relationship is provided using the observer pattern.
This pattern “defines a one-to-many dependency between objects so that when one
object changes state, all its dependents are notified and updated automatically”
[Gamma et al. 95, pp. 293]. The observer pattern is used to maintain the independence
of the domain objects from their interface counterparts, so that a change in the interface
design would not require the domain objects to change as well.

FIGURE 10. The overall system architecture of the framework

Product Modeling

Domain

Objects
Generation Mechanism

Modeling Objects
Requirements Modeling

Objects

Product Library

Interface

Window
Product Model

Editor
Generation Mechanism

Editor

Main Application
Window

Project Designer
Window

Observer
Mechanism

secondary windows

www.manaraa.com

Phd Thesis - Spring 98 45

Framework Design

5.1.2 Representing Product Models

The framework represents the concept of a product model (explained in section 4.3.2) as
the group of classes shown in [Figure 11] . The ProductModel16 class represents the prod-

uct model concept and contains the classes which represent its components. These are
ClassifierGroup and SPClassifer (for classification), RelationType and SPRelation (for relation-
ships) and SpecElement and its subclasses (for specification categories and static
attributes). The ProductModel class maintains one-to-many relationships with RelationType,
ClassifierGroup, and SpecCategory (SpecCategory represents the container in the 1:N Recur-
sive Connection metapattern described later [Figure 12]). These relationships allow an
instance of ProductModel to contain any number of instances of these classes. These
instances become, effectively, a set of dynamic attributes for the ProductModel object in
which they are contained. Such a feature allows the definition of product models at run-
time using compositions of relationship types, classifier groups and specification cate-
gories.

Two more classes are defined in this object model. The Product class (for product) is
bound to ProductModel with a one-to-many relationship. This allows a Product instance to
contain multiple ProductModel instances as alternative or complementary specification
sets that can be used to describe a product. The other class is ProductLib (for product

FIGURE 11. The product modeling object model using the OMT notation

16. The type face Helvetica Narrow is used to denote class names, class attributes and methods.

classifiers
(represents “or”)

classifier_groups
(represents “and”)

RelationType

model_prototypes

products

Product ProductLib

relation_types

SpecElement
components

SpecPrimitive

enumerations

SpecCategory

EnumeratedPrimitiveBooleanPrimitiveFloatingPointPrimitiveIntegerPrimitive

categoriesSPClassifier

ClassifierGroup

StringPrimitive

ProductModel

SPRelation
relations

www.manaraa.com

46 Phd Thesis - Spring 98

A Framework for Modeling and Manipulating Design Requirements

library), which allows instances of Product to be stored in libraries of related products,
such as a library for products related to the construction industry.

A RelationType instance can contain instances of SPRelation, which defines a relationship
between two specification units. However, SPRelation objects cannot be created directly
in a product model definition because specification units are not defined within its con-
text17. An instance of SPRelation can represent any type of relationship between two
specification units. It consists of references to two SpecUnit (for specification unit) objects,
and a numeric value. The value can be used to qualify a relationship as in the case with
adjacency relationships where the value can indicate the minimum overlap between two
units in a layout. The meaning of the relationship is determined by the RelationType object
in which it is contained.

The classification concept, introduced in section 4.3.2, is represented by two object
classes: ClassifierGroup and SPClassifier. The ClassifierGroup class provides a grouping of
SPClassifier objects, where only one SPClassifier is valid at a time. A SpecUnit instance can
have more than one SPClassifier instance attached to it as long as they belong to different
ClassifierGroup instances. The SPClassifier class provides means to specify rules of composi-
tion for a specification unit hierarchy. This is achieved by storing, in a SPClassifier
instance, the names of permissible classifications of the container and constituents of the
specification unit to which it is attached.

The objects that form the static attributes of a specification unit are represented as
instances of the subclasses of SpecPrimitive (these are: IntergerPrimitive, FloatingPointPrimitive,
StringPrimitive, BooleanPrimitive and EnumeratedPrimitive). Any number of such instances can be

17. Creation of SPRelation objects is explained later in this section.

FIGURE 12. The use of 1:N recursive connection metapattern in modeling specification elements

SpecElement

components

SpecPrimitiveSpecCategory

EnumeratedPrimitive

1:N Recursive Connection
metapattern

H

T()

T

H()

hL
is

t SetCategory(sc)

SetCategory(sc)
. . .

AddComponent()

GetEnums()
. . .

for each spElem in
components:
spElem->SetCategory(sc);

. . .

category= sc;

category= sc;

SetCategory(sc)
. . .

H: hook class or method
T: template class or method

Indicates correspondense between elements in a metapattern and their equivalents in system design

www.manaraa.com

Phd Thesis - Spring 98 47

Framework Design

grouped into a category represented by the SpecCategory class. SpecPrimitive and SpecCate-
gory are subclasses of SpecElement [Figure 11]. The structure of the these three classes con-
form to the 1:N recursive connection metapattern described in [Pree 95, pp. 162]. The
use of this pattern allows the recursive composition of SpecElement instances as compo-
nents of SpecCategory. It also provides template methods identified in SpecElement that
have different implementations (known as hooks) in its subclasses according to their
roles in the composition. An example of such methods is SetCategory(), which is defined
as a template method in SpecElement, while its implementation is defined as hook meth-
ods in the subclasses [Figure 12].

5.1.3 Representing Generation Mechanisms

A generation mechanism provides rules for creating customized outputs from a design
requirements description. These rules generate the specification units that constitute the
output, then it sets their properties based on their input counterparts. The framework
supports the creation of generation mechanisms through the object model shown in
[Figure 13]. The GenMechanism class (for generation mechanism) provides the overall

structure where rules can be created and stored. An instance of GenMechanism relates to
two ProductModel instances, where one acts as the input model and the other as the output
model. Instances of GenMechanism are contained inside the Product instance which con-
tains the input and the output models, and possibly other models as well. The frame-
work supports a different mapping technique for each of the three categories of
information associated with a product model: specification categories and primitives,
classifications and relationships. Each mapping technique is encapsulated in a class that
provides associations to the relevant type of information.

Attribute mapping: Mapping attributes (described in section 4.3.3) is implemented
using the SpecPrimitiveMap class [Figure 13]. A SpecPrimitiveMap instance maintains a refer-
ence (inSP) to a SpecPrimitive instance from the input ProductModel and another reference

FIGURE 13. The generation mechanism object model using the OMT notation

ProductModel

gen_mechanisms

GenMechanism

input_model

output_model

SpecPrimitiveMapFormulaMap

specPrimMaps classifierMaps relationMaps

outRTinRToutCLinCLoutSPinSP

formula
maps

SpecPrimitive

ClassifierMap

SPClassifier

RelationMap

RelationType

Product

www.manaraa.com

48 Phd Thesis - Spring 98

A Framework for Modeling and Manipulating Design Requirements

(outSP) to a SpecPrimitive instance from the output ProductModel. In the case of direct map-
ping [section 4.3.3], the value of the input SU attribute matching the primitive refer-
enced by inSP (of a SpecPrimitiveMap object) would be mapped to the output SU attribute
matching the primitive referenced by outSP. To perform indirect mapping [section 4.3.3],
a SpecPrimitiveMap instance uses a FormulaMap instance which stores a formula that can
perform the desired indirect mapping. If a FormulaMap instance is specified for a SpecPrim-
itiveMap instance, the inSP reference loses significance, because a formula uses its own ref-
erences to its relevant primitives, which can include the one referenced by inSP as well
as other SpecPrimitive objects that exist in the input ProductModel.

A FormulaMap object stores a formula in the form of string of text conforming to the
description provided in section 4.3.3. The FormulaMap class includes a mechanism for
parsing the formula string, which I have Implemented, based on the recursive descent
parsing technique [Aho & Ullman 72] to allow scoping of calculations using parenthe-
sis. The parser substitutes references to primitives in the input ProductModel with their
actual values, and stores them and the operators that exist in the formula in two sepa-
rate arrays. Whenever the parser encounters a nested formula (delineated by open “(“
and close “)” parenthesis), it recursively parses it and replaces it with its computed
value. The structure and behavior of the relationship between SpecPrimitiveMap and Formu-
laMap classes conform to the 1:1 connection metapattern described in [Pree 95, pp. 161].

As shown in [Figure 14], if a FormulaMap object is attached to a SpecPrimitiveMap object, the
mapping is delegated to the FormulaMap object by calling its Run method. Run parses the
formula creating an array of numbers and another of mathematical operators, calculates
the formula and returns a numeric value. However, if no formula is attached to the
SpecPrimitiveMap object at hand, a direct mapping is performed. First, the attributes
matching the types referenced by inSP and outSP are retrieved from the input and output
specification units. Then the value of the input SU attribute is copied to that of the out-
put SU attribute.

FIGURE 14. The use of 1:1 connection metapattern in modeling attribute mappings

if (formula)

1:1 Connection
metapattern

T

T()

H

H()

hlist

SpecPrimitiveMap

FormulaMap

formula

PerformMapping(inSU, outSU)
MapDirect(inSU,outSU)

Run(inSU, outSU)
. . .

formula->Run(inSU,outSU)
else

MapDirect(inSU,outSU)

ParseFormula(inSU,outSU);

. . .

Calculate(numsArr,opsArr);

Indicates correspondense between elements in a metapattern and their equivalents in system design

www.manaraa.com

Phd Thesis - Spring 98 49

Framework Design

Classification mapping: The ClassifierMap class enables mapping of classifiers (repre-
sented as SPClassifier objects) from a product model to another. A ClassifierMap instance
maintains a reference (inCL) to a SPClassifier instance from the input ProductModel and
another reference (outCL) to a SPClassifier instance from the output ProductModel. It also
maintains a reference to a FormulaMap object which contains a formula for calculating the
number of specification units to be created from an input SU. This formula is similar to
the one used to map attribute values, and can contain references to attribute names,
numbers and operators as well. The only difference is that its value is interpreted as the
number of output specification units to be created.

Specialized mappings (described in section 4.3.3) are implemented in the form of a col-
lection of SpecPrimitiveMap instances connected to the ClassifierMap instance at hand
[Figure 13]. Once such a collection is defined for a ClassifierMap instance, it is used for
attribute mapping for any SU with a classification matching that referenced by inCL. On
the other hand if that collection is not defined, the collection of SpecPrimitiveMap instances
(specPrimMaps) located directly under the GenMechanism object is used instead. The overall
structure and behavior of the generation mechanism object model conforms to a series
of 1:N connection metapatterns described in [Pree 95, pp. 161]. As shown in the

instance diagram [Figure 15], when a GenMechanism object receives a request to generate
an output from an input SU, it tries to find a corresponding ClassifierMap object in its clas-
sifierMaps list. If it finds one, it delegates the process of creating the output entirely to the
ClassifierMap object. The ClassifierMap object calculates the number of output units to be
created using its attached formula (if a formula is not attached it assumes the number to
be one). It then creates the appropriate number of units, mapping their values using its
attached list of SpecPrimitiveMap instances (maps) in a manner identical to the one shown

FIGURE 15. The use of 1:N connection metapattern in modeling generation mechanisms

1:N Connection
metapattern

T

T()

H

H()

hlist

GenMechanism

SpecPrimitiveMap

specPrimMaps classifierMaps

maps
ClassifierMap

FormulaMap

formula

FormulaMap

formula

GenerateOutput(inSU)
. . .

if (cMap= GetClassMap(inSU))
cMap->PerformMapping(inSU,outSU)

else {

for each spMap in specPrimMaps:
spMap->PerformMapping(inSU,newSU); }

newSU= CreateSU();

numberOfUnits= formula->Run();

PerformMapping(inSU)
. . .

for (n=1 to numberOfUnits) {
newSU= CreateSU();
for each spMap in maps:
spMap->PerformMapping(inSU,newSU); }

MapClassfication(inSU,newSU);

PerformMapping(inSU)
. . .

for each constituent constSU of inSU:
GenerateOutput(constSU);

Indicates correspondense between elements in a metapattern and their equivalents in system design

www.manaraa.com

50 Phd Thesis - Spring 98

A Framework for Modeling and Manipulating Design Requirements

in [Figure 14]. It then sets the classification of each generated unit according to the map-
ping rule specified in the ClassifierMap object.

On the other hand, if the GenMechanism object doesn’t find an appropriate ClassifierMap
object for the input SU, it creates one output unit and performs the mapping as a 1:1
connection metapattern [Figure 14] using its list of SpecPrimitiveMap objects. In essence,
each of the two 1:N connection metapatterns (One[GenMechanism]->Many[SpecPrimitiveMap]
and One[GenMechanism]->Many[ClassifierMap] is reduced to a series of 1:1 connection meta-
patterns of One[SpecPrimitiveMap]->One[FormulaMap]. When all output units of a given
input SU are generated and their attribute values and classifications mapped, the same
operation is applied recursively to the constituents of the input SU.

Relation mapping: The RelationMap class is used to map relationships from the input SU
hierarchy to the output SU hierarchy being created. A RelationMap object has a reference
(inRT) to a RelationType object which exists in the input ProductModel and another (outRT) to
a RelationType object from the output ProductModel. It uses these two references to create
SPRelation objects for the output SU hierarchy, of the type specified by the outRT refer-
ence. Relationships are mapped according to the following scenario:
If:

• two specification units, (SU1 &SU2) from the input SU hierarchy have output units
generated from them in an output SU hierarchy, and

• they are bound by a relationship of a certain type, and

• a RelationMap object exists whose inRT reference matches that type of relationship,

Then:

• create SPRelation objects, of the type specified by the inRT reference of the RelationMap
object, that binds each unit generated from SU1 to these generated from SU2.

5.1.4 Representing Design Requirements

The framework represents design requirements as a hierarchy of SpecUnit (for specifica-
tion unit) objects. A SpecUnit contains other units as constituents (using the one-to-many
constituents relationship) to enable the creation of the hierarchy [Figure 16]. The static
attributes of a SpecUnit object are created dynamically as set of SpecCategory objects. Each
SpecCategory instance contains a group of SpecElement objects as explained earlier
[Figure 12]. A SpecUnit object can reference a number of SPClassifier objects that provide
classification information. This information is used to constrain the classification of the
container and the constituents of the SpecUnit object when forming the SU hierarchy as
stated earlier in section 5.1.2. The type of SPClassifier and SpecCategory objects a SpecUnit
can reference and contain is determined by the ProductModel object to which it is related.
The relationship between a SpecUnit and its ProductModel is handled through the Product-
Construct object, which handles a number of functions. First, it contains the top-level Spe-
cUnit objects in a hierarchy. Second, it maintains the connection to the active
ProductModel, which determines the SpecCategory and SPClassifier objects associated with
a SpecUnit. Using that connection it handles the creation of SpecUnit objects; ensuring the

www.manaraa.com

Phd Thesis - Spring 98 51

Framework Design

each SpecUnit created has the correct set of SpecCategory objects, and the access to the
appropriate set of SPClassifier objects. Third, the ProductConstruct provides a reference to
the GenMechanism object which determines how to create output SU hierarchies from the
one contained inside the ProductConstruct. Fourth, it maintains the SPRelation objects
related to its SU hierarchy. Finally, it manages the collection of SPMapObject instances.
Each SPMapObject provides a connection between a SpecUnit object that exists in the input
hierarchy and the ones in an output SU hierarchy that were generated from it. The col-
lection of SPMapObject instances can be used by generation mechanisms to map relation-
ships between hierarchies, and provide updates to output units when changes occur to
their input counterparts18.

A ProductConstruct object also provides a way to relate an input SU hierarchy to the multi-
ple output hierarchies generated from it using different generation mechanisms. Each
SU hierarchy is contained inside a ProductConstruct, which is contained inside a Product
object [Figure 16]. Here, the Product class plays an additional role to the ones it played in
the creation of product models and generation mechanisms. It relates an input Product-
Construct object containing the main design requirements description of a product in the
form of a SU hierarchy to other ProductConstruct objects, each containing a set of require-
ments generated from the input set, and customized for a specific design system.

FIGURE 16. Design requirements object model using the OMT notation.

18. Updating the value of output units was not been implemented in this prototype. However,
the infrastructure needed to support it is implemented and used to map relationships as
shown in the next chapter.

SPClassifier SpecCategory

SPRelation

SpecUnit

SPMapObject

Product

constituents

outputSUs

inputSU

SUs

classifiers categories

SU2

SU1

mapObjects

outputs

relation_types

specs

ProductConstruct
ProductModel

RelationType

GenMechanism

active_model

active_GM

www.manaraa.com

52 Phd Thesis - Spring 98

A Framework for Modeling and Manipulating Design Requirements

5.2 Achieving Flexibility in the Framework Design

The framework design, presented in the previous section, provides the degree of flexi-
bility needed to create and manipulate design requirements, define product models and
generation mechanisms, and structure generated outputs independently from the
design requirements description. Such flexibility allowed all these tasks to be performed
without the need to re-program the system. To achieve the needed flexibility, certain
software development strategies were employed in designing the framework. These
strategies are highlighted in this section.

5.2.1 Object Compositions vs. Static Attributes

One of the main design objectives was to allow a specification unit to have varying
attributes, classifications, and relationship types according to the product model it uses.
To enable such a feature, these properties were not defined as regular static class mem-
bers for the SpecUnit class, which represents specification units. Instead, they were
defined as a collection of objects that gets attached to a SpecUnit instance at run-time.
Similar object compositions were used throughout the design of the framework for
object properties that need to be defined dynamically. In addition, object compositions
allow the delegation of behavior which was used extensively in representing product
models (section 5.1.2) and generation mechanisms (section 5.1.3).

5.2.2 Prototype-Based Object Creation

Attributes, classifications and relationship types used by a SpecUnit instance are defined
according to the product model it uses. Normally, these attributes, classifications, and
relationship types would be classes of objects which can be instantiated, as is the case
with SEED-Pro [Figure 7 on page 31]. Adding a new property to specification units in
SEED-Pro involves defining a new class or adding attributes and methods to one of its
ComponentSpecs classes. This clearly requires some programming effort, and has to be
done by people who have programming, as well as domain experience. Furthermore,
some programming languages, such as C++, do not allow introducing new classes or
modifying existing ones at run-time. This requires the appropriate programming envi-
ronment to be available for compiling the system every time a new property is intro-
duced.

To avoid such complexities, the framework employs prototype-based object creation
when instantiating attributes, classifications, and relationship types for a SpecUnit
instance. Using the Prototype pattern, described in [Gamma et al. 95, pp. 117], a Product-
Model object specifies the kinds of objects to create using prototypical instances, and cre-
ates new objects by copying these prototypes to each SpecUnit object being created. These
prototypical instances are created initially, using object composition, as the set of
SpecElement objects during the process of defining a product model (described in
section 5.1.2). However, for the prototype-based object creation to work, these prototyp-
ical instances are required to have unique names.

www.manaraa.com

Phd Thesis - Spring 98 53

Achieving Flexibility in the Framework Design

5.2.3 Separating Generation Mechanisms from Product Models

Creating an output from a set of design requirements is the result of an operation or a
set of operations applied to the design requirements object structure. The framework

employs a variation of the Strategy pattern described in [Gamma et al. 95, pp. 315] to
achieve a flexible way of defining these operations. This pattern defines a family of
encapsulated algorithms, so that they can vary independently from the objects that use
the pattern. The pattern used in the framework differs from the Strategy pattern in the
sense that is based on composition instead of inheritance [Figure 17]. It also augments
the Strategy pattern by allowing the algorithms to be created and modified at run-time.
As explained earlier (section 5.1.3), the operations needed to perform mappings are
encapsulated in the SpecPrimitiveMap, ClassifierMap and RelationMap classes. The user can
control the type of information an instance of these classes use, by setting its input refer-
ence (such as, inSP for SpecPrimitiveMap). The user can also control how the mapping takes
place for SpecPrimitiveMap and ClassifierMap instances by defining the mapping formulae
they use at run-time. Defining such a formula (as explained in section 5.1.3) effectively
controls the way the mapping algorithm works. At its present state, the framework
allows such formulae to be defined for mappings that involve numbers only. Investigat-
ing similar techniques for other types of mappings can be the subject of a future
research effort.

5.2.4 User Interface

The framework graphical user interface was designed to accommodate and express the
flexibility provided by the domain representation. Interface elements were selected
according to the type of information they represent and the function they provide.
Object compositions are represented using a tree metaphor to allow the viewing of

FIGURE 17. Using a variation of the Strategy pattern to create flexible generation mechanisms

Strategy pattern

Strategy

AlgorithmInterface()

Context

ContextInterface()

strategy

ConcreteStrategyB

AlgorithmInterface()

ConcreteStrategyA

AlgorithmInterface()

GenMechanism

SPMap_1

specPrimMaps

formula

FormulaMap

GenerateOutput(inSU)
. . .

inSU

SP_1

formula

SPMap_1

SPMap_1

SP_2

SP_3

categories

(SP_1 + SP_2) * SP_3

inSP

inSP

inSP

formula text
User defined at
run-time

Indicates correspondense between elements in a metapattern and their equivalents in system design

www.manaraa.com

54 Phd Thesis - Spring 98

A Framework for Modeling and Manipulating Design Requirements

entire compositions of objects represented as tree nodes [Figure 18]. They also support
the actions the user needs to perform in editing these compositions. An example of such
actions is nesting nodes by dragging one that represents a constituent (such as an Interg-
erPrimitive instance) and dropping it onto another representing a container (such as a
SpecCategory object).

Other interface elements, such as the specification unit editor window, creates interface
elements according to properties of specification unit it displays. The type of interface
element to use is selected to support the interaction style needed to manipulate the
information it displays. For example, the window on the far left, in [Figure 18], uses
simple text editing fields to display and edit numeric and textual information. At the
same time, it uses pop-up buttons for cases when a selection set is available and only
one selection is valid at a time, such as classifications.

5.2.5 Expanding the Framework

Some consideration was given the capabilities that allow expanding the framework to
enhance its functionality and scope, especially in places where a modification seems
probable. An example where such a consideration plays a role, is the way in which the
SpecElement class and its sub-classes are structured as a 1:N recursive connection meta-
pattern [Figure 12]. In case a new SpecPrimitive sub-class is needed, it can simply be
added without any changes in the framework since all of its connections are defined at

FIGURE 18. Examples of the framework GUI showing its adaptability

Tree node
representing a
SpecCategory Tree node representing

a SpecPrimitive

Self adapting window
for displaying the
properties of specification
units. The window packs
interface elements
accoding to the attributes
and classifications of the
SU it displays

www.manaraa.com

Phd Thesis - Spring 98 55

Achieving Flexibility in the Framework Design

its super-class level. The system developer will only need to specialize the methods
whose implementation has to be customized for the new class.

www.manaraa.com

56 Phd Thesis - Spring 98

A Framework for Modeling and Manipulating Design Requirements

www.manaraa.com

Phd Thesis - Spring 98 57

Modeling Mode

CHAPTER 6

Using the Design Requirements Modeling
Framework

The framework can be used in two modes according to the task being performed: model-
ing and designing. The modeling mode allows the user (or modeler in this case) to create
product models and generation mechanisms and store them in libraries to be used to
create design specifications. The designing mode allows the designer to use these prod-
uct models and generation mechanisms to create design requirements for buildings
(and potentially, other engineering artifacts) and generate outputs customized for other
design systems. The framework is implemented as a running system with a graphical
user interface called SP_II. It provides two sets of interface elements for use with each
mode. This chapter illustrates using the framework for each mode through examples.

6.1 Modeling Mode

Using the framework in the modeling mode involves creating descriptions of product
models that can be used in developing models of design requirements. It also involves
modeling generation mechanisms, which are used to create customized outputs for
other design systems. It is therefore envisioned that this task is performed by a domain
expert with rigor and precision. This domain expert will be called a “modeler” through-
out this section.

6.1.1 Creating a Product Model

Product models are created as alternative or complementary ways to describe a prod-
uct. Products are stored in libraries which can be customized to include products that
relate to each other according to some criteria which the modeler defines. The examples,
presented in this section illustrate the creation of a new product library and a product in
that library with two different product models. One of these product models supports
the generation of design requirements for Army Reserve centers. The other supports the
creation of a hierarchy of spatial building components, which contains the set of design
requirements needed by SEED-Layout to generate floor layouts of buildings.

www.manaraa.com

58 Phd Thesis - Spring 98

Using the Design Requirements Modeling Framework

When the modeler starts the system, the Main window appears [Figure 19]. This win-

dow provides access to the main system functionality for both user modes. It contains
five buttons for, respectively, 1)creating a new product library, 2)opening an existing
one, 3)creating a new project, 4)displaying general information about the system, and
5)exiting the system.

To create a new library, the modeler clicks on the button labeled “New Library”, which
displays the Product Libraries window. Once the window is displayed, it asks the mod-
eler to enter a name for the new product library to create. The modeler enters the name
“Army Buildings” and the new library is displayed in the tree view which shows the
loaded libraries [Figure 20, (a)].

The Product Libraries window contains the Modeler menu which provides the function-
alities needed during the modeling mode. The modeler selects the library node, then

selects the “New Product” command from the Modeler menu, which prompts the user
to specify a name for the new product. After the user types in the name “Army Reserve
Centers”, the system adds the new product to the selected product library and displays
it as a child node for the node representing the library in the window tree view
[Figure 20, (b)]. To create a product model, the modeler selects the “Army Reserve Cen-
ters” product, then selects the “New Model” command from the Modeler menu. Again
the system prompts for a name. The modeler types “Design Requirements Model” and
confirms. This product model will be used to create the design requirements for an

FIGURE 19. The Main window

FIGURE 20. Using the Product Library window

1 2 3 4 5

(a) Newly created product library

(b) New product added to the library

(c) New product model added to the
“Army Reserve Centers” product

(d) Another product model added to the
“Army Reserve Centers” product

www.manaraa.com

Phd Thesis - Spring 98 59

Modeling Mode

army research center building later in this chapter. The system adds the new product
model to the selected product and displays the complete library-product-product model
composition in the tree view [Figure 20, (c)]. Similarly, the modeler adds another prod-
uct model, named “SL Model”, to the same product. This product model will be used to
model the spatial output which will be generated later from the requirements. The mod-
eler is now ready to build a description for each of the newly created product models.

As mentioned earlier (section 4.3.2), a product model description consists of specifica-
tion attributes, classifications and relationship types. To create such a description, the
modeler selects the “Edit Model” command from the Modeler menu of the Product
Libraries window. The system displays the Product Editor window which contains three
panels. The first panel displays the specification primitives the modeler creates, the sec-
ond displays classifications, while the third displays relationship types. Naturally, all
three panels will be empty when the window is opened for the first time. The modeler
starts by creating specification categories which will contain the specification primi-
tives. To create a specification category, the modeler selects the “New Group” command
from the Specifications menu. The system prompts the modeler for a name and confirms.
The system then creates the new category and displays it as a node in the specification
categories window panel [Figure 21]. The modeler then selects a category, and instructs

FIGURE 21. The “Design Requirements Model” product model description in the Product Editor
window

Specification Categories/Attributes
 panel

Classification
 panel

Relation Types
 panel

Category
Boolean Attribute

String Attribute
Enumerated Attribute

Integer Attribute

Classification Group
Classifier

Relation Type

www.manaraa.com

60 Phd Thesis - Spring 98

Using the Design Requirements Modeling Framework

the system to create a new attribute by selecting the type of the attribute to be created
from the Specifications menu. The type of the attribute can be “integer” (to store inte-
gers), “floating point” (to store floating point numbers), “string” (to store text), “bool-
ean” (to store yes or no values), and “enumerated” (to store a list of choices). The system
asks the modeler to type in a name for the new attribute and displays it as a sub-node of
the selected specification category node. Different types of attributes have different
icons displayed next to them to indicate their type [Figure 21]. The modeler creates the
specification categories and attributes needed to represent the type of information asso-
ciated with the design requirements of army reserve center buildings. These include
spatial, thermal, acoustic, interior finishes and other types of attributes, as well as the
classifications and relationship types shown in [Figure 21].

Likewise, the modeler develops a description for the other product model (SL Model)
which contains primarily spatial attributes and the classifications and relationship types
shown in [Figure 22]. The modeler is now ready to define a generation mechanism

which can create an output SU hierarchy that uses SL-Model as its product model, from
an input hierarchy created using the Design Requirements Model.

6.1.2 Creating a Generation Mechanism

A generation mechanism consists of a group of mappings as described in section 4.3.3. It
is created by selecting the “Create New Mechanism” command from the Generation

FIGURE 22. The “SL-Model” product model description in the Product Editor window.

Specification Categories/Attributes
 panel

Classification
 panel

Relation Types
 panel

Category
Floating Point Attribute

Classification Group
Classifier

Relation Type

www.manaraa.com

Phd Thesis - Spring 98 61

Modeling Mode

menu of the Product Editor window. The system prompts for a name then displays the
Generation Manager window. Using this window, the modeler can create the mappings
that form a generation mechanism. The Generation Manager window contains three
main regions [Figure 23]. The first region contains three tree views for displaying the

information categories of the input product model, while he second region displays the
description of the output product model. Below the second region, are three buttons,
each can be used to create a different type of mapping. The bottom region of the win-
dow contains a tree view for displaying the mappings the modeler creates, as well as a
text entry field for inputting arithmetic expressions used to perform the indirect map-
pings explained in section 4.3.3.

The modeler starts by setting the input and output product models. This can be done by
selecting the models from the “Input Model” and “Output Model” menus respectively.
Once a product model is selected from the menu, its description is displayed in its corre-
sponding region. To create an attribute (spec) mapping, the modeler selects an attribute
from the input model and another from the output model. When these selections are
made, and the selected attributes are of matching types, the “Map Spec Items” button,
located under the attributes panel of the output model, becomes active. The modeler
clicks the button, causing the system to create a mapping description that binds the two

FIGURE 23. Creating a generation mechanism for mapping two product models

Output Model
 Region

Input Model
 Region

Mappings
 View

Formula Entry
 Field

Attribute mapping formula for
 selected Spec Map

www.manaraa.com

62 Phd Thesis - Spring 98

Using the Design Requirements Modeling Framework

attributes to each other. The newly created mapping is displayed in the bottom region of
the window.

If it is left at that, such a mapping will be interpreted by the system as a direct mapping.
This means that, when creating a new output SU, the value of its attribute which corre-
sponds to the one referenced by the mapping object, will be set by directly copying the
value of the corresponding input SU attribute. In order to perform indirect mapping,
the modeler has to define a mathematical expression (formula) in the text field located
at the bottom part of the Generation Manager window. An example would be to define
the expression “Personnel Number * Area per Person” for the “Spec Map: Min Area=>MinArea”
mapping [Figure 23]. Such an expression will cause the value of the Min Area attribute of
the output unit created to be equal to the product of the Personnel Number and the Area per
Person attributes of the input SU used to generate the output unit at hand. The modeler
creates other mappings in a similar fashion, which will all be displayed at the bottom
region of the window. The mappings created in this way become the default mappings
of the current generation mechanism. They will be used to map attribute values for all
input specification units that do not have specialized mapping defined according to
their classifications19.

Creating a classification mapping is similar to creating an attribute mapping. The mod-
eler selects a classifier from the input model and another from the output model. This
activates the “Map Classifications” button, located under the classification panel of the
output model. The modeler clicks the button, causing the system to create a mapping
description that binds the two classifiers to each other. The newly created classifier map-
ping is also displayed at the bottom region of the window along with the other map-
pings. The classifier map “Classifier Map: Shared=>Room” [Figure 24] instructs the system to

create SUs classified as “Room” from input SUs classified as “Shared”. A classifier map
can include a formula to calculate the number of output units to be created from an SU

19. Creating specialized mapping is explained later in this section.

FIGURE 24. A sample expression for specifying the number of output units according to
classification mapping.

Formula for specifying the number of output units to create for an input Spec Unit of certain classification

www.manaraa.com

Phd Thesis - Spring 98 63

Using the Framework in the Designing Mode

with a certain classification. An example is creating output units for input specification
units classified as “Shared” according to the formula: “Personnel Number * Area per Person /
50” [Figure 24]. This instructs the system to multiply the number of people using an SU
classified as “Shared”, by the area needed for each person. The result is then divided by
50, which represents the maximum area allowed for each space of such a classification.
The final result specifies the number of output units to be created during generation.

To create specialized mappings for specification units classified as “Shared”, the mod-
eler selects the “Classifier Map: Shared=>Room” mapping, then creates attribute mappings in
the way explained earlier. However, in this case, the newly created attribute mappings
will be displayed as sub-nodes of the selected classifier map node; indicating that they
apply only when their container node applies. If a classifier map does not have any spe-
cialized attribute mappings, the default ones will be used. However, if it contains even
one specialized mapping, none of the default mappings will be used in this case.

Mapping relationships is done in a similar way. The modeler selects a relationship type
from the input model and another from the output model. This activates the “Map Rela-
tionship Types” button, located under the relationship types panel of the output model.
The modeler clicks the button, causing the system to create a mapping description that
binds the two relationship types to each other. The newly created relationship type
mapping is also displayed at the bottom region of the window (prefixed with “Relation
Map”) along with the other mappings. Relationship mapping works according to the
way described in section 5.1.3.

The system now has enough information to enable the creation of a design requirements
description for an army reserve center building using the “Design Requirements” prod-
uct model. This description will be used to create another description based on the “SL-
Model” product model, using the generation mechanism that maps the two models.

6.2 Using the Framework in the Designing Mode

Using the framework in the designing mode involves creating a description of design
requirements for a certain product, and using it to generate another requirements
description customized for a certain design system. It is therefore envisioned that this
task is performed by an architectural programmer or a decision maker, who will be
called a “designer” throughout this section.

6.2.1 Creating a Project

A project is an entity which can contain one or more product descriptions. The designer
creates a new project by selecting the “Create New Project” command from the
Designer menu of the Product Libraries window. The system prompts for a name to the
new project, creates a new project and displays it in the Projects window. This window
is used for displaying and manipulating the information needed during the designing
mode. It contains a tree view that shows the project structure (the opened projects and
the product descriptions they contain). It also contains two more views: one for display-

www.manaraa.com

64 Phd Thesis - Spring 98

Using the Design Requirements Modeling Framework

ing and manipulating the specification units that compose the main design require-
ments description of the active product, and another for displaying the outputs
generated from that main description.

6.2.2 Creating a Design Requirements Description

After a project is created, the designer needs to specify the type of product to use. This is
done by selecting a product from the Product Libraries window, copying and pasting it
to the newly created project in the Projects window. The designer then activates the
product by selecting it in the Projects window [Figure 25]. Activating a product means

that its product models and generation mechanism become available for use, and
choices in the Generation and Specification menus of the Projects window will be set
accordingly. Given that a product contains several product model (in this case two), the
designer has to specify which product model to be used for creating design require-
ments. This is done by selecting the Design Requirements Model, created earlier, then
selecting the “Set Product Model” command from the Specifications menu.

The designer can now start creating the design requirements description in the form of a
specification unit hierarchy. To create a specification unit, the designer selects the “Cre-
ate Spec Unit” command from the specifications menu. The system prompts for a name

FIGURE 25. Specifying a product type for a project.

1. Selecting and copying a product

1
2

3

2. Selecting a project and pasting the product
3. Activating a product

selected product selected project

name of active product

(Product Libraries window) (Projects window)

specifications panel

output panel

www.manaraa.com

Phd Thesis - Spring 98 65

Using the Framework in the Designing Mode

then displays the new unit in the specification panel of the Projects window. To add a
specification unit as a constituent of another, the designer first selects a unit then creates
a new one. The new unit is created and placed as a constituent of the selected unit. The
designer can also drag a unit with the mouse and drop it into another unit to achieve the
same result. However, the compositional constraints, imposed by the classifications of

the two units have to be satisfied in order for the drop process to be allowed20. The
designer creates as many specification units as needed to represent the design require-
ments of the active product. A sample SU hierarchy for an army reserve center adminis-
trative building is shown in [Figure 26]. Each SU in the hierarchy contains a number of

FIGURE 26. A sample design requirements description in the form of specification units.

specifications units

specifications categories for an SU *

* (defined according to the Design Requirements product model)

available classifications *

relation types *

an input SU with a relation to the one displayed in the
window

www.manaraa.com

66 Phd Thesis - Spring 98

Using the Design Requirements Modeling Framework

attributes. These are defined according to the specification categories and attributes cre-
ated earlier for the Design Requirements Model product model [Figure 21]. To edit the
values of these attributes for a give SU, the designer selects the unit, and the “Edit Spec
Unit” command from the Specifications menu. The system displays the Specification
Unit Editor window, which allows the designer to enter attribute values, set classifica-
tions, and specify relationships between the current SU and others using the relation-
ship types available in the product model used [Figure 26].

6.2.3 Generating a Customized Output

When the designer finishes creating the design description, customized requirements
descriptions can be created using the generation mechanisms available for the active
product model. The designer starts by selecting the generation mechanism from the
Generation menu of the Projects window. This will set the selected mechanism as active

20. This does not apply when new unit are created directly as constituents of others, because the
new unit has no classification specified at the time of its creation.

FIGURE 27. Generating a customized output from an input SU hierarchy.

generated output unitsselected input unit active generation mechanism

www.manaraa.com

Phd Thesis - Spring 98 67

Using the Framework in the Designing Mode

and will display its name in the window [Figure 27]. The designer then selects a specifi-
cation unit to be assigned as an input unit, then selects the “Generate Output” com-
mand from the Generation menu. The system asks the designer to enter a name for the
new output to be generated, then it generates output units for the selected SU according
to the mapping rules of the selected generation mechanism. The generated output units
are displayed in the output panel of the Projects window21 [Figure 27]. Each output unit
generated, maintains a relationship to its corresponding input unit. This relationship
can be used to map relationships as well as update the values of the output units when
their input counterparts are changed 22.

The number properties of the generated output units are determined according to their
input counterparts using the mapping rules. For example, the 217th TC Unit Exclusive
CDR specification unit, in the input hierarchy, has the attribute values shown in
[Figure 26]. It is classified as Private and Unit Exclusive, and has a relationship of type
Adjacencies to the 217th TC-Unit Common specification unit. The generation mechanism
found that the mapping “Classifier Map: Private=>Room” applies since the SU is classified as
Private. This mapping indicates the number of output units to be generated is equal to
value in the PersonnelNumber attribute of the input SU (meaning that one person occupies
each private unit). That caused the generation mechanism to create one output unit with
the same name suffixed with the number “1” (217th TC Unit Exclusive CDR1)23. The out-

21. In this example, the top node in the input hierarchy was selected for generation. This caused
the generation mechanism to be applied recursively to all of its nodes; causing the creation of
units shown in the output panel in [Figure 27].

FIGURE 28. Properties of a generated output SU.

22. Updating the value of output units was not been implemented in this prototype. However,
the infrastructure needed to support it is implemented and used to map relationships.

23. If more the one output unit is created the suffix is incremented for each additional unit.

value for MinArea= 13.9 * 1.5

values set by direct mapping

classification set as Room

output SUs with relations to the one
displayed in the window

www.manaraa.com

68 Phd Thesis - Spring 98

Using the Design Requirements Modeling Framework

put unit MinArea attribute is set according to the specialized mapping for the MinArea
attribute which uses the formula “AreaPerPerson * 1.5”. This formula multiplies the value
of the AreaPerPerson attribute in the input SU by 1.5, and places the result in the MinArea
attribute of the output unit [Figure 28]. Other attributes are mapped via direct mapping
where values are copied directly from the corresponding input attribute according to
the specialized mappings defined under the “Classifier Map: Private=>Room” mapping. This
mapping also caused the classification of the output unit to be set as Room. Finally, the
generation mechanism used the mapping “Relation Map: Adjacencies=>Adjacencies”, to create
relationships of type Adjacencies that binds the output unit generated from 217th TC
Unit Exclusive CDR to the ones generated from 217th TC-Unit Common24 [Figure 28].

FIGURE 29. structuring an output hierarchy independently from the input one.

24. Multiple units were generated from the 217th TC-Unit Common SU because it is classified as
Shared. This caused a different mapping to apply which specifies the number of output units
to generate as: PersonnelNumber * AreaPerPerson / 50.

Added units: units classified as Floor, units classified as Horizontal Zone

www.manaraa.com

Phd Thesis - Spring 98 69

Using the Framework in the Designing Mode

The designer can now structure the generated output into a hierarchy by adding specifi-
cation units to represent floors and zones and adding the generated units as their con-
stituents [Figure 29]25.

25. An ongoing research effort is being conducted at the School of Architecture, Carnegie Mellon
University to provide mechanisms for structuring requirements based on multiple criteria.
See [Akin et. al., 95].

www.manaraa.com

70 Phd Thesis - Spring 98

Using the Design Requirements Modeling Framework

www.manaraa.com

Phd Thesis - Spring 98 71

Contributions

CHAPTER 7

Conclusions

This chapter contains the contributions of this research and some possible research
directions that can build on what has been accomplished so far.

7.1 Contributions

During the past few years, several computational design support and simulation tools
for building design have emerged, from research as well as industrial institutions. Many
of these tools provide design generation and evaluation mechanisms which assist build-
ing designers to rapidly create and evaluate design alternatives. Such tools normally
require a relatively large input of design requirements information, from which design
representations are created and evaluated. The usability of design support and evalua-
tion systems has been adversely affected by the lack of computable representations for
creating and manipulating design requirements. Such representations can provide a
repository from which the input information needed by design support and simulation
systems can be generated.

The research, described in this thesis, describes a computable model of building design
requirements that supports:

• the diverse nature of information typically associated with the architectural program-
ming stage, and

• the creation of specialized representations, needed by other design support and per-
formance simulation systems.

The approach used to achieve these research goals is a framework that contains organiz-
ing concepts and software building blocks from which representations of design
requirements can be built. It builds on and augments the work accomplished in SEED-
Pro (the architectural programming module of SEED) by re-engineering its information
model.

This research constitutes the first effort to attempt the modeling of building design
requirements using software engineering principles26. It makes contributions in the fol-
lowing areas:

www.manaraa.com

72 Phd Thesis - Spring 98

Conclusions

7.1.1 Architectural Programming

The framework described in this document provides means to structure the unstruc-
tured domain of architectural programming using software engineering techniques.
Such a structure enables the creation of architectural programs in a computable form.
This provides mechanisms to experiment with different configurations of architectural
programs and manage alternative compositions. It will also make architectural pro-
grams more flexible and adaptable to different situations through the reuse of past pro-
grams, either partially of fully. It will be possible to perform consistency checking and
other types of evaluation mechanisms, as well as feasibility studies, on these representa-
tions. This can be done by either extending the framework to support the creation of
evaluation mechanisms or by creating customized outputs for design evaluation sys-
tems using the current framework functionalities. These evaluation capabilities can pro-
vide more support for decision making at the architectural programming stage.

In addition, information captured in computable form will allow the automatic transfer
of information to other design representations (used by other design systems), or can
simply be printed in reports needed for feasibility studies or legal contracts and agree-
ments. The ability to transfer information, in this manner, will allow architectural
programming to be better integrated with other stages of the design process. Changes
will be easily propagated back and forth between design requirements and other design
representations that use them.

7.1.2 Design Requirements Modeling

The proposed framework allows for the creation of models of design requirements
which can be customized according to users’ preferences. This is of special importance
because many design firms have developed their own models of design requirements
over the years. Potentially, design firms will be able to choose between converting their
models into a computable form using the proposed framework, or buying a commercial
“off-the-shelf” model developed according to a certain standard.

The framework makes it possible to change or augment such models of design require-
ments during the process of creating architectural programs and other types of design
requirements. This is enabled through a graphical user interface that enables users to
dynamically create new categories of specification attributes, classifications, and rela-
tionship types which can be used to describe design requirements. These functionalities
could be used to define design requirements for domains other than buildings as well.
The current prototype design was based on the type of requirements associated with the
design of buildings. However, the implementation is general enough to potentially sup-
port modeling design requirement for any type of product that can be described using
the information categories supported by the framework.

26. To date, the core functionality of SEED-Pro is the first prototype we know where building
design requirements are being modeled according to software engineering techniques.

www.manaraa.com

Phd Thesis - Spring 98 73

Enhancements and Future Research Directions

7.1.3 SEED

The proposed research builds on, and augments, the work we have accomplished so far
in SEED-Pro, the architectural programming module of the SEED project [section 3.2.3].
It provides SEED with an architectural programming module that supports the explor-
atory nature of the design process. Specifically, it provides the ability to experiment with
different ways of modeling design requirements for buildings, as well as different ways
to generate specialized requirements from specifications. This will make it possible to
conduct studies which compare alternative models of design requirements and genera-
tion strategies and evaluate them in different design settings.

In that regard, the framework provides a clear enhancement over the way design
requirements are modeled in SEED-Pro [Table 1]. In addition to the phases the current
implementation of SEED-Pro supports, SP_II provides support for two additional
phases in the process. It allows for the dynamic creation of product model descriptions
at run-time, which can be used to model design requirements. It also enables the
dynamic creation of generation strategies and mechanisms that provide rules for gener-
ating customized outputs from specifications. Creating a new product model or genera-
tion strategy in the current implementation of SEED-Pro requires programming these
representations in C++ and incorporating them into the SEED-Pro prototype. This
greatly inhibits exploration of these two phases and prevents ordinary users and archi-
tectural programming experts who lack the ability to program in C++ from contributing
to the creation of product models and generation strategies.

7.2 Enhancements and Future Research Directions

The research described in this document can benefit from several enhancements and
suggests directions for future research. This section provides a brief outline of these
issues.

Creating Prod-
uct Models

Creating Gen-
eration Strate-

gies

Creating
Requirements
Descriptions

Generating
Customized

Outputs

Structuring
Outputs

Exporting to
Other Modules

SEED-Pro No Support.
Needs to be
programmed
into the system

No Support.
Needs to be
programmed
into the system

Supported Supported if the
output product
model is
already pro-
grammed

Supported in a
manual mode

Supported
using OML

SP_II Frame-
work

Supported Supported Supported Supported Supported in a
manual mode

Supported
using OML

TABLE 1.Phases of the design requirements modeling process supported by SEED-Pro and the
SP_II framework.

www.manaraa.com

74 Phd Thesis - Spring 98

Conclusions

7.2.1 Creating a SRPOUT Language Generator that Supports Multiple Shared Schemata

The main reason for creating customized models of design requirements from specifica-
tions is to export these models to the design systems for which they were created. The
process of exporting these models is currently accomplished in the SEED system using
the Object Modeling Language (OML). OML supports the definition of a shared schema
through which different modules can communicate. Each module then has to have its
own set of language bindings, which translate information between the module internal
representation and the shared schema.

The process of creating these language bindings is fairly straight forward in the case of
SEED-Pro as there is only one output model within SEED-Pro for which language bind-
ings must be created. On the other hand, the SP_II framework can have multiple output
models, which are also created at run-time. This complicates the process of creating lan-
guage bindings for these representations, as a different set of language bindings has to
be created for every output product model. Furthermore, OML requires these language
bindings to be compiled into the system; it cannot interpret them at run-time, which
complicates the process even more.

SPROUT [Snyder et. al., 95] is a successor to OML which promises more flexibility than
its predecessor. However, the language bindings still have to be created and compiled
with the system. A way to go around this problem is for the framework to have a
SPROUT language binding generator. This generator takes as an input a shared schema
and a product model description. It then generates their language bindings and com-
piles a copy of SP_II, which can export that product model into the shared schema rep-
resentation. Creating a separate copy of SP_II for every shared schema is still required
since SPROUT does not support the definition of multiple shared schemata within the
same communication protocol.

7.2.2 Modeling Evaluation and Integrity Checking Mechanisms

During the course of developing SP_II, the need for capturing dependencies between
specification primitives, which constitute the static attributes of a specification unit,
became clear. Such dependencies are needed to provide value constraints on some
attribute values that are dependent on other attributes. An example is a constraint indi-
cating that the value of the minimum area attribute of a specification unit should be at
least equal to the square of its minimum width attribute value. One way to achieve such
a model of dependencies is have a spreadsheet representation for a product model that
manages these dependencies.

An evaluation mechanism that is currently implemented in SP_II provides rules of com-
position for a hierarchy using classifications [section 4.3.2]. A detailed study of evalua-
tion techniques needed in the architectural programming process can provide some
insights into the kind of evaluation mechanisms the framework needs to support.

www.manaraa.com

Phd Thesis - Spring 98 75

Enhancements and Future Research Directions

7.2.3 Investigating the Dependencies Between Classifications

SP_II allows for the definition of multiple classifications of a specification unit. How-
ever, it assumes that these classifications are mutually exclusive. Assigning a classifier
from a certain group to a SU does not prevent assigning another classifier belonging to
another group to the same SU or invalidate any pervious assignments. This requires the
modeler to exercise great care in creating classifications to make sure that they are
mutually exclusive. The way classification is implemented in SP_II does not provide for
the creation of dependencies between classifications. Such an elaborate classification
scheme can be implemented using a classification system such as CLASSIC [Woods 91].
Another alternative is to create a multi-faceted classification taxonomy similar to the
one described in [Rivard 97].

7.2.4 Providing Classification-Based Attributes

A specification unit gets its attributes from the specification primitives defined in the
product model it uses. Some of these attributes might not be applicable to certain classi-
fication of specification units, but have to be there to support other classifications. An
example is a SU classified as a bedroom that has attributes for specifying plumbing
requirements. Such attributes are needed for a SU classified as a bathroom or kitchen. A
set of classification-based attributes can be defined to solve this problem. These
attributes will be added to a SU or removed according to its classification. Having classi-
fication-based attributes requires a mechanism for managing the addition and removal
of these attributes in a way that ensures the integrity of the representation and can be a
future research issue.

7.2.5 Investigating Additional Uses for Indirect Mapping

Indirect mapping is currently used to set the value a numeric attribute of an output SU
based on the values of a group of numeric attributes in the input SU, that are linked by a
mathematical expression. These expressions (or formulae) currently accept numbers,
basic arithmetic operators and references to numeric attributes only. If they are
expanded to handle logical operators, they can be used to set non-numeric attribute val-
ues through a generation strategy based on logical expressions. An example, can be:
IF (Classification == “Bedroom”) THEN (Orientation = “South East”), which set the value of the Orien-
tation attribute of the output SU to South East, if the input unit is classified as Bedroom.
Adding these features requires augmenting the recursive descent parser used to parse
formulae.

7.2.6 Usability Analysis: Investigating Interface Metaphors for Representing and
Manipulating Design Requirements

Systems that model and manipulate design requirements are a software novelty. Their
interfaces primarily provides simple metaphors that are closely tied to their internal
information model. For example, SP_II uses a lot of tree displays as a metaphor for rep-
resenting compositions that exist in its domain object model. Whereas, these metaphors
might appear adequate to manipulate the model, empirical studies, involving different

www.manaraa.com

76 Phd Thesis - Spring 98

Conclusions

categories of potential users and evaluators, are needed to verify the validity of such
metaphors. These studies can be the subject of future research.

www.manaraa.com

Phd Thesis - Spring 98 77

CHAPTER 8

Bibliography

[Aho & Ullman 72] Aho, A. & J. Ullman. (1972). The Theory of Parsing, Translation, and Com-
piling. Englewood Cliffs, N.J: Prentice-Hall

[AIA 66] American Institute of Architects. (1966). Emerging Techniques of Architec-
tural Practice. Washington, DC: The AIA Press.

An early publication that signaled the emergence of architectural pro-
gramming as a separate field.

[Akin et. al., 95] Akin, Ö., R. Sen, M. Donia, & Y. Zhang. (1995). SEED-Pro: Computer
Assisted Architectural Programming in SEED. In Journal of Architectural
Engineering, Vol 1 No, 4, December 1995.

A paper that describes the functionalities and design of SEED-Pro.

[Augenbroe 93] Augenbroe G. L. M., S. C. Chase, W. Rombouts, and H. R. Schipper.
(1993). Information Models in Building Design. In M. R. Beheshti et al.
(Ed.) Advanced Technologies: architecture - planning - civil engineering. NY:
Elsevier.

This papers deals with the assessment of approaches in information
models in buildings from different perspectives. Focuses on the short-
comings of EDM.

[Bachman 69] Bachman, C.W. (1969). Data Structure Diagrams. In Data Base 1 (2), pp.
4-10.

A paper that contains a description of some data structure diagrams,
particularly the entity- relationship model.

www.manaraa.com

78 Phd Thesis - Spring 98

Bibliography

[Barr 89] Barr, A., Cohen, P. R., & Feigenbaum, E. A. (Eds.) (1989). The Handbook of
Artificial Intelligence (Vol IV). Reading: Addison Wesley, Inc.

A companion volume to the previous volume which summarizes more
recent developments in Artificial Intelligence including: Blackboard
Systems, Expert Systems, Computer Visions, Distributed AI, and Simu-
lation.

[Berzins & Luqi 91] Berzins, V., & Luqi. (1991). Software Engineering with Abstractions. Read-
ing: Addison Wesley, Inc.

A book on software engineering that describes a design methodology
based on abstract data types (ADTs).

[Brachman et al. 91] Brachman, R. J., McGuiness, P.F. Patel-Schneider, L. Borgida. (1991). Liv-
ing with Classic: When and How to Use a KL-ONE-like Language. In J.
Sowa. (Ed.) Principles of Semantic Networks Explorations in the Representa-
tion of knowledge. San Mateo, CA: Morgan Kaufmann Publishers, Inc.

A paper that shows how to use classification- based knowledge repre-
sentation systems to their fullest potential.

[Brodie 86] Brodie, M.L., Mylopoulos, J., Schmidt, J.W. (1986). On Conceptual Model-
ing: Perspectives from Artificial Intelligence, Databases and Programming
Languages. Harrisonburgh, VA: Springer-Verlag.

A paper that contains an overview of some conceptual model along
with some evaluations.

[Brooks 95] Brooks, F. (1995). The Mythical Man-Month: Essays on Software Engineer-
ing. Reading, MA: Addison-Wesley Publishing. Co.

The anniversary edition of the famous book which provides a strong
argument against ad-hoc approaches to complex systems development
through the authors experience with the development of the IBM sys-
tem 360. It was first published in 1975.

[Brunet 91] Brunet, J. (1991). Modeling the World with Semantic Objects. In Proceed-
ings of the IFIP TC8/WG8.1 Working Conference on the Object-Oriented
Approach to Information Systems, Van Assche, F., Moulin, B., and Rolland,
C., (eds.). Quebec, Canada: North-Holland.

A paper that advocates the refinement of the aggregation relationship
in object-oriented system design, into the more general “composition”
relationship.

www.manaraa.com

Phd Thesis - Spring 98 79

[Chen 76] Chen, P.P.S. (1976). The Entity-Relationship Model: Toward a Unified
View of Data. ACM Transactions on Database Systems, Vol1 No 1, March
1976.

A paper that describes a conceptual model called the Entity-Relation-
ship model which is based on data independence. It adopts the view
that the real world consists of entities and relationships among them.
Entities and relationships are characterized by properties and the three
of them are classified into types.

[Chikofsky & Cross 90] Chikofsky, E., & Cross, J. (1990). Reverse Engineering and Advanced
Recovery: A Taxonomy. IEEE Software, January 1990.

A paper that describes a conceptual model called the Entity-Relation-
ship model which is based on data independence. It adopts the view
that the real world consists of entities and relationships among them.
Entities and relationships are characterized by properties and the three
of them are classified into types.

[Codd 70] Codd, E. F. (1970). A Relational Model for large shared data banks. Com-
munications of ACM, Vol 13 No 6, pp.377-387.

A paper that introduced the relational model for database management
systems.

[Domeshek & Kolodner 92] Domeshek, E. A. and J. L. Kolodner. (1992) “A Case-Based Design Aid
for Architecture”. Artificial Intelligence in Design `92, J. Gero (ed.), Boston:
Kluwer Academic Publishers, pp. 497-516.

[Duerk 93] Duerk, D. P. (1993). Architectural Programming: Information Management
for Design. NY: Van Nostrand Reinhold.

An architectural programming book that views the process as the first
part of the design process. It contains models and reviews of previous
work done on the subject.

[Fenves et al. 94] Fenves, S., U. Flemming, C. Hendrickson, M. L. Maher, R. Quadrel, M.
Terk, & R. Woodbury. (1994). Concurrent Computer Integrated Building
Design. Engelwood Cliffs, NJ: Prentice Hall.

A book that describes the concept of integrated building design with a
focus on IBDE. Contains brief descriptions of systems with similar
approaches, such as, ICADS and DICE.

www.manaraa.com

80 Phd Thesis - Spring 98

Bibliography

[Fenves et al. 95] Fenves, S., Rivard, H., Gomez, N., & Chiou, S. C. (1995). “Conceptual
Structural Design in SEED” Journal of Architectural Engineering, 1(4),
New York: American Society of Civil Engineers. pp. 179-186.

[Flemming & Chien 95] Flemming, U. and Chien, S. F. (1995). “Schematic Layout Design in SEED
Environment” Journal of Architectural Engineering, 1(4), New York: Amer-
ican Society of Civil Engineers. pp. 162-169.

[Flemming & Woodbury 95] Flemming, U. and Woodbury, R. (1995). “Software Environment to Sup-
port the Early Phases of Building Design (SEED): Overview” Journal of
Architectural Engineering, 1(4), New York: American Society of Civil
Engineers. pp. 162-169.

A paper that provides an overview of the SEED system.

[Flemming et al. 96] Flemming, U., Aygen, Z., Snyder, J., and Tsai, J. (1996). “A2: An Archi-
tectural Agent in a Collaborative Engineering Environment”. Report
EDRC 48-38-96, Engineering Design Research Center. Carnegie Mellon
University, Pittsburgh, PA.

[Flemming et al. 94] Flemming, U, Coyne, R., Snyder, J. (1994). “Case-Based Design in the
SEED System”. Proc. 1st Congress on Computing in Civil Engineering, K.
Khozeimeh, ed. New York: American Society of Civil Engineers, pp.446-
453.

[Flemming et al. 92] Flemming, U., R. Coyne, R. Woodbury, S. Bhavnani, S. Chiou, B. Chio, R.
Stouffs, T. Chang, S. Han, C. Jo, H. Kiliccote, J. Shaw, & K. Suwa (1992).
SEED-LOOS Requirements Analysis. Engineering Design Research Cen-
ter, Carnegie Mellon University. Unpublished working paper.

This document is a requirements analysis developed using the OOSE
software engineering methodology.

[Freeman & Newell 71] Freeman, P. and A. Newell. (1971). A Model for Functional Reasoning in
Design. Proceedings of the 2nd International Conference on Artificial
Intelligence. London: British Computer Society, pp. 621-640.

This document is a requirements analysis developed using the OOSE
software engineering methodology.

www.manaraa.com

Phd Thesis - Spring 98 81

[Gamma et al. 95] Gamma, E., R. Helm, R. Johnson, & J. Vlissides. (1995). Design Patterns:
Elements of Reusable Object-Oriented Software. NY: Addison-Wesley.

A very successful book that gained a wide attention in the field of soft-
ware engineering. It describes the idea of designing software around
behavioral patterns that map to certain object relations. It includes a
catalogue of design patterns organized in three main categories: Cre-
ational, Structural, and Behavioral patterns.

[Garret et. al., 95] Garret, J. H., Kiliccote, H., & Choi, B. (1995). Providing Formal Support
for Standards Usage within SEED. In Journal of Architectural Engineering,
Vol 1 No, 4, December 1995.

A paper that contains a description of the standards support environ-
ment which contains a standards modeling language.

[Hix et al. 93] Hix, D., & H. R. Hartson. (1993). Developing User Interfaces: Ensuring
Usability Through Product & Process. NY: John Wiley and Sons, Inc.

A book about the design of graphical user interfaces. It contains an
overview of the evolution of the user interfaces as well as some sug-
gested design guidelines.

[Jacobson et al. 92] Jacobson, I., M. Christerson, P. Jonsson, & G. Övergaard. (1992). Object-
Oriented Software Engineering: A Use Case Driven Approach. NY: Addison-
Wesley.

A widely referenced book and notion methodology that can be used to
completely specify the behavior of a system designed around objects
starting from use cases. Extensive coverage of the Object Oriented Soft-
ware Engineering Method (OOSE) is provided.

[Johnson & Feather 90] Johnson, W.I. & Feather, M. (1990). Building an Evolution Transforma-
tion Library. Proceedings of the 12th International Conference on Software
Engineering. Nice, March 90.

[Khedro 95] Khedro, T., Case, M. P., Flemming, U., Genesereth, M. R., Logcher,R.,
Pedersen, C., Snyder, J.,Sriram, R. D. and P. M. Teicholz. (1995). “Devel-
opment of a Multi-Institutional Test bed for Collaborative Facility Engi-
neering Infrastructure” in J. P. Mohsen (Ed.) Computing in Civil
Engineering: volume 2: Proceedings of the Second Congress held in conjunction
with the A/E/C Systems `95, Atlanta, GA, June 5-8, New York: American
Society of Civil Engineers. pp. 1308-1315.

A paper that contains a description of the ACL project which was a
joint project between Carnegie Mellon University, MIT, Stanford Uni-

www.manaraa.com

82 Phd Thesis - Spring 98

Bibliography

versity, and the University of Illinois at Urbana, to create a distributed
building design environment by combining multiple design systems
located in each of the contributing institutions.

[Koopmans & Beckman 57] Koopmans, J. C. & Beckman, M. J. (1957). Assignment Problems and the
Location of Econometric Activities. Econometrica 25: p. 53-76.

Describes a system to translate architectural drawings (plans) into topo-
logical concepts such as circulation elements, adjacencies and direct
access.

[Koutamanis & Mitossi 93] Koutamanis, A. & V. Mitossi. (1993). On the representation of Dynamic
Aspects of Architectural Design in Machine Environment. In M. R.
Beheshti et al. (Ed.) Advanced Technologies: architecture - planning - civil
engineering. NY: Elsevier.

Describes a system to translate architectural drawings (plans) into topo-
logical concepts such as circulation elements, adjacencies and direct
access.

[Krasner et al. 88] Krasner, G. E., & S.T. Pope. (1988). A cookbook for using the model-
view-controller user interface paradigm in Smalltalk-80. In Journal of
Object-Oriented Programming, August/September 1988.

A text about the use of the Model-View-Controller paradigm in Small-
talk.

[Kumlin 95] Kumlin, Robert. (1995). Architectural Programming: Creative Techniques for
Design Professionals. New York: McGraw-Hill.

A book that contains some techniques for conducting architectural pro-
gramming as well as an overview of architectural programming evolu-
tion and practices.

[Liggett 80] Liggett, R. S. (1992). The Quadratic Assignment Problem: An Analysis of
Applications and Solution Strategies. Environment and Planning B: Plan-
ning and Design 7, pp. 141-162.

A paper that contains a description of creating layout using stacking
and blocking diagrams based on the quadratic assignment problem.

[Loucopoulos et al. 92] Loucopoulos, P., & Zicari, R. (1992). Conceptual Modeling, Databases, and
CASE: An Integrated View of Information Systems Development. New York:
John Wiley and Sons, Inc.

A collection of recent papers that present the collective concept of infor-
mation modeling as an approach to large information system develop-
ment.

www.manaraa.com

Phd Thesis - Spring 98 83

[Loucopoulos 92] Loucopoulos, P. (1992). Conceptual Modeling. In Conceptual Modeling,
Databases, and CASE: An Integrated View of Information Systems
Development. New York: John Wiley and Sons, Inc.

A paper that provides an introduction to information systems and con-
ceptual modeling.

[Maiden &Sutcliffe 91] Maiden, N.A.M. & Sutcliffe, A.G. (1991). Specification Reuse by Anal-
ogy. Software Engineering Journal 6(1), pp. 3-15.

A paper that illustrates a mechanism for reusing specifications in the
design of information systems.

[Minsky 75] Minsky, M. (1975). A Framework for Representing Knowledge. In The
Psychology of Computer Vision, Winston, P., ed. New York, NY: McGraw-
Hill.

A famous knowledge representation paper in which the notion of
frames was first introduced.

[Myer 93] Myer, B. A. (1993). State of the Art in User Interface Software Tools. In H.
R. Hartson & D. Hix (Ed.), Advances in Human-Computer Interaction, Vol
2. Norwood, NJ: Ablex.

An in-depth survey on the available UI software tools.

[Mylopoulos et al. 80] Mylopoulos, J., Bernstein, P.A., & Wong, H.K.T. (1980). Language Facil-
ity for Designing Database Intensive Applications. ACM Transactions on
Database Systems, Vol 15, No 2.

[Mylopoulos 92] Mylopoulos, J. (1992). Conceptual Modeling and Telos. In Conceptual Mod-
eling, Databases, and CASE: An Integrated View of Information Systems
Development. New York: John Wiley and Sons, Inc.

A paper that provides an introduction to information systems and con-
ceptual modeling as well as introducing a modeling language based on
the notion of propositions.

[Olive 86] Olive, A. (1986). A Comparative of the Operational and Deductive
approaches to Conceptual Information Systems Modeling. Information
Processing 86. Nordweighthout, Netherlands: Elsavier Science, North-
Holland.

A paper that contains an overview of some conceptual modeling
approaches.

www.manaraa.com

84 Phd Thesis - Spring 98

Bibliography

[Peckham & Maryanski 88] Peckham, J., & Maryanski, F. (1988). Semantic Data Models. ACM Com-
puting Surveys, Vol 20, No. 3, September 1988.

A paper that contains a description of semantic data models.

[Pena et al. 87] Pena, W., S. Parshall & K. Kelly. (1987). Problem Seeking: An Architectural
Programming Primer. Washington: AIA Press.

A famous book that contains a description of an architectural program-
ming methodology that became adapted by several firms.

[Pree 95] Pree, W. (1995). Design Patterns for Object-Oriented Software Development.
NY: Addison-Wesley.

A book that describes the idea of building and using application frame-
works using design patterns. It contains a detailed description of the
concepts used in the ET++ application framework.

[Preiser 93] Preiser, W. (1993). Professional Practice in Facility Programming. NY: Van
Nostrand Reinhold.

A book on facility programming to develop design parameters and
specifications over a broad range of project types. It addresses the most
recent developments, and the newest applications and methodological
advances in the field.

[Rich & Knight 91] Rich, E., & K. Knight. (1991). Artificial Intelligence, second edition. NY:
McGraw-Hill, Inc.

Provides an overview for artificial intelligence in general.

[Rivard 97] Rivard, H. (1997). A Building Design Representation for Conceptual Design
and Case-Based Reasoning. Pittsburgh, PA: Carnegie Mellon University,
Doctoral Thesis, Department of Civil and Environmental Engineering.

[Rolland et al. 92] Rolland, C., & Cauvet, C. (1992). Trends and Perspectives in Conceptual
Modeling. In Conceptual Modeling, Databases, and CASE: An Integrated
View of Information Systems Development. New York: John Wiley and
Sons, Inc.

A paper that provides an introduction to information systems develop-
ment and conceptual modeling with an emphasis on the influence of
object orientation.

www.manaraa.com

Phd Thesis - Spring 98 85

[Rumbaugh et al. 91] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., & Lorensen, W. (1991).
Object-Oriented Modeling and Design. Englewood Cliffs: Prentice-Hall.

A widely referenced book and notion methodology that can be used to
completely specify the behavior of a system designed around objects.
Extensive coverage of the Object Modeling Technique (OMT) is pro-
vided.

[Sanoff 74] Sanoff, H. (1974). Methods of Architectural Programming. Strousburg, PA:
Dowden, Mutchinson & Ross.

A book that contains a description of an architectural programming
methodology.

[Schmid 75] Schmid, H.A., Swenson, J.R. (1975). On the Semantics of the Relational
Model. In Proceedings of the ACM SIGMOD Conference, pp 211-223.

A paper that contains a description of the relational model for database
management systems.

[Schmidt 77] Schmidt, J.M., Schmidt, D.C.P. (1977). Database Abstractions: Aggrega-
tion and Generalization. ACM Transaction on Database Systems, Vol 2, No
2, pp 105-133.

A paper that contains a description of some abstraction forms that
became widely used in information modeling.

[Simon 89] Simon, H. A. (1989). Models of Thought, volume I. New Haven, CT: Yale
University Press.

A collection of papers, organized into chapters, by the author and oth-
ers that contains a wide range of studies and theories of cognitive and
information processing psychology.

[Snyder et. al., 95] Snyder, J., Aygen, Z., Flemming, U., & Tsai, J. (1995). SPROUT - A Mod-
eling Language for SEED. In Journal of Architectural Engineering, Vol 1 No,
4, December 1995.

A paper that contains a description of a modeling language to be used
as means of information storage and transfer between the different
modules of the SEED system.

[Stroustrup 91] Stroustrup, B. (1991). The C++ Programming Language (2nd ed.). Engle-
wood Cliffs: Prentice-Hall.

This reference was written by the author of the C++ language and
describes the language as well as intended uses via examples.

www.manaraa.com

86 Phd Thesis - Spring 98

Bibliography

[Ullman 88] Ullman, J. (1988). Principles of Database and Knowledge-Base Systems, Vol-
ume I: Classical Database Systems. Rockville, Maryland: Computer Science
Press.

A sequel to the widely used reference: Principles of Database Systems,
by the same author, that incorporates the emerging idea of the knowl-
edge-base systems and object oriented databases.

[Verrijin-Stuart 87] Verrijin-Stuart, A. (1987). Themes and Trends in Information Systems. The
Computer Journal, 30.

[Weinand et al. 95] Weinand, A. & E. Gamma. (1995). ET++ - a Portable, Homogenous Class
Library and Application Framework, research report, Cupertino CA:
Taligent, Inc.

A paper that describes the ET++ application framework for developing
object-oriented software application. It contains examples of commer-
cial applications built using the framework.

[Woodbury & Chang 95] Woodbury, R. & Chang, T. W. (1995). “Massing and Enclosure Design
with SEED-Config” Journal of Architectural Engineering, 1(4), New York:
American Society of Civil Engineers. pp. 170-178.

[Woods 91] Woods W. A. (1991). Understanding Subsumtion and Taxonomy: A
Framework for Progress. In J. Sowa. (Ed.) Principles of Semantic Net-
works Explorarions in the Representation of knowledge. San Mateo, CA: Mor-
gan Kaufmann Pubishers, Inc.

A paper that analyses the concept of subsumtion and taxonomy and
synthesizes a framework that integrates and clarifies many of previous
approaches and goes beyond then to provide and account of abstract
and partially defined concepts.

www.manaraa.com

Phd Thesis - Spring 98 87

APPENDIX 1

Requirements Modeling Using Use
Cases

A 1.1 Common Use Cases

This set of use cases represents the functionality of the system accessible to both actors.
These use cases are:

1. Close Product Library [page 90]

2. Open Product Library [page 89]

3. Rename Product Library [page 91]

4. Save Product Library [page 92]

5. Start SEED-Pro [page 88]

www.manaraa.com

88 Phd Thesis - Spring 98

A 1.1.1 Start SEED-Pro

Flow of Events:

1. The user instructs the operating system to start SEED-Pro.
2. The operating system starts the SEED-Pro application.
3. The SEED-Pro application issues a “Run” command which displays the Main win-

dow.

Preconditions: A SEED-Pro executable exists in the current file system.

Interface Design:

Interaction Diagram 30. Starting SEED-Pro

OS

Start
Start SP

Run

aSEED-ProApp

Show

aMainWindowaUser

www.manaraa.com

Phd Thesis - Spring 98 89

Common Use Cases

A 1.1.2 Open Product Library

Flow of Events:

1. The user selects the “Open Product Library” command from the Main window.
2. The system displays the File dialog prompting the user for the Library file name.
3. The user types in the name or selects the file by navigating throught the file system

and confirms.
4. The system creates the Library from the file and displays the Product Library win-

dow showing the selected Library.

Preconditions: Main window is displayed, and a Library file exists on the file system.

Interface Design:

Interaction Diagram 31. Opening Product Library

aMainWindow

Show
Open PL

aFileDialog

New (File descriptor)

aProductLibWinaUser

Enter File name

File name

aProductLibrary

File descriptor

Show (aProductLibrary)

www.manaraa.com

90 Phd Thesis - Spring 98

A 1.1.3 Close Product Library

Flow of Events:

1. The user selects a library in the Product Library window then selects the “Close
Product Library” command.

2. The system displays an alert dialog asking the user if changes to the Library should
be saved.

3. The user makes a selection, and the system closes the selected library file and deletes
the ibrary object.

Preconditions: A library is selected in the Product Library window.

Interface Design:

Interaction Diagram 32. Closing Product Library

aProductLibWin

Save Changes?

Close PL

aAlertDialogaUser

Answer [Yes / No]

Save & Close Lib File

Close Window

Answer

Show

aProductLibrary

Delete Object

www.manaraa.com

Phd Thesis - Spring 98 91

Common Use Cases

A 1.1.4 Rename Product Library

Flow of Events:

1. The user selects the “Rename Product Library” command from the Product Library
window.

2. The system displays a Set Name dialog asking the user for the new name.
3. The user types in the name and confirms.
4. The systems sends a “Rename Library” command to the Product Library object, and

updates the interface accordingly.

Preconditions: A library is selected in the Product Library window.

Interface Design:

Interaction Diagram 33. Renaming Product Library

aProductLibWin

Enter new name

Rename PL

aSetNameDialogaUser

New Name

Update interface

New Name

aProductLibrary

Rename Library (New Name)

www.manaraa.com

92 Phd Thesis - Spring 98

A 1.1.5 Save Product Library

Flow of Events:

1. The user selects the “Save Product Library” command from the Product Library win-
dow.

2. If the Library has been save before the system moves to step (5)
3. The system displays the File dialog prompting the user for Library file name.
4. The user types in the name and confirms.
5. The system send a “Save” command to the Product Library object.

Preconditions: A library is selected in the Product Library window.

Interface Design:

Interaction Diagram 34. Saving Product Library

aProductLibWin

Show
Save PL

aFileDialog

Save ([Library File Name])

aUser

Enter Library File Name

Library File Name

aProductLibrary

Library File Name

www.manaraa.com

Phd Thesis - Spring 98 93

Use Cases for Modeler

A 1.2 Use Cases for Modeler

This set of use cases represents the functionality of the system accessible to the specifica-
tion modeler. These use cases are:

1. Copy Product / Product Model [page 103]

2. Copy Product Modeling Element [page 115]

3. Create Classification Group [page 118]

4. Create Classifier [page 121]

5. Create Generation Mechanism [page 130]

6. Create New Product [page 96]

7. Create Product Library [page 95]

8. Create Product Model [page 100]

9. Create Relation Type [page 127]

10. Create Specialized Mapping [page 144]

11. Create Specification Category [page 107]

12. Create Specification Primitive [page 110]

13. Cut (Remove) Product [page 105]

14. Cut (Remove) Product Model [page 106]

15. Cut Product Modeling Element [page 113]

16. Direct-Map Specification Primitives [page 136]

17. Edit Classifier [page 123]

18. Edit Product [page 98]

19. Edit Product Model [page 101]

20. Formula-Map Specification Primitive [page 138]

21. Map Classifiers [page 140]

22. Map Relation Type [page 142]

23. Paste Classifier [page 125]

24. Paste Product Model [page 104]

25. Paste Specification Primitive [page 116]

26. Remove Product [page 97]

27. Rename Classification Group [page 120]

28. Rename Product [page 99]

29. Rename Product Model [page 102]

30. Rename Relation Type [page 129]

www.manaraa.com

94 Phd Thesis - Spring 98

31. Rename Specification Category [page 109]

32. Rename Specification Primitive [page 112]

33. Setup Generation Mechanism [page 132]

34. Show Generation Report [page 134]

www.manaraa.com

Phd Thesis - Spring 98 95

Use Cases for Modeler

A 1.2.1 Create Product Library

Flow of Events:

1. The user selects the “New Product Library” command from the Main window.
2. The system displays the Set Name dialog prompting the user for Library name.
3. The user types in the name and confirms.
4. The system creates a new Product Library and displays the Product Library window

showing the new Library.

Preconditions: Main window is displayed.

Interface Design

Interaction Diagram 35. Creating Product Library

aMainWindow

Show
New PL

aSetNameDialog

New (Library name)

aProductLibWinaUser

Enter Library name

Library name

aProductLibrary

Library name

Show (aProductLibrary)

www.manaraa.com

96 Phd Thesis - Spring 98

A 1.2.2 Create New Product

Flow of Events:

1. The user selects the “Create New Product” command from the Product Library win-
dow.

2. The system displays a Set Name dialog asking the user for the new name.
3. The user types in the name and confirms.
4. The systems creates a new Product object, adds it to the Product Library, and

updates the interface accordingly.

Preconditions: A library is selected in the Product Library window.

Interface Design:

Interaction Diagram 36. Adding a New Product to Library

aProductLibWin

Enter Product Name

New Product

aSetNameDialogaUser

Product Name

Update interface

Product Name

aProduct

New Product (Product Name)

aProductLibrary

Add Product (aProduct)

www.manaraa.com

Phd Thesis - Spring 98 97

Use Cases for Modeler

A 1.2.3 Remove Product

Flow of Events:

1. The user selects a Product from the Product Library window.
2. The user selects the “Remove Product” command from the Product Library window.
3. The system removes the selected Product from the Product Library, deletes the Prod-

uct object and updates the interface accordingly.

Preconditions: A Product is selected in the Product Library window.

Interface Design:

Interaction Diagram 37. Removing a Product

aProductLibWin

Remove Product (Product)

Select Product

aProductLibraryaUser

Delete
Update interface

aProduct

Remove Product

www.manaraa.com

98 Phd Thesis - Spring 98

A 1.2.4 Edit Product

Flow of Events:

1. The user selects a Product from the Product Library window.
2. The user selects the “Edit Product” command from the Product Library window.
3. The system displays the Product Editor window with the selected Product ready for

editing.

Preconditions: A Product is selected in the Product Library window.

Interface Design:

Interaction Diagram 38. Editing (modeling) a Product

aProductLibWin

Show (Product)

Select Product

aProductEditorWinaUser

Edit Product

www.manaraa.com

Phd Thesis - Spring 98 99

Use Cases for Modeler

A 1.2.5 Rename Product

Flow of Events:

1. The user selects the “Rename Product” command from the Product Editor window.
2. The system displays the Set Name dialog prompting the user for a new name.
3. The user types in the name and confirms.
4. The system sends a “Rename” command to the Product object and updates the inter-

face accordingly.

Preconditions: A Product is selected in the Product Editor window.

Interface Design:

Interaction Diagram 39. Renaming a Product

aProductEditorWin

Enter new name

aSetNameDialogaUser

New Name

Update interface

New Name

aProduct

Rename (New Name)

Rename Product

www.manaraa.com

100 Phd Thesis - Spring 98

A 1.2.6 Create Product Model

Flow of Events:

1. The user selects the “Create Product Model” command from the Product Library
window.

2. The system displays the Set Name dialog prompting the user for the new Product
Model name.

3. The user enters the name and confirms.
4. The system creates a new Product Model and adds it to the selected Model and

updates the interface accordingly.

Preconditions: A Product is selected in the Product Library window.

Interface Design:

Interaction Diagram 40. Creating a Product Model

aProductLibraryWin

Enter PM Name

aSetNameDialogaUser

PM Name

Update interface

Product Name

aProduct

Create Product Model (PM Name)

Select Product

Create PM

Note: PM = Product Model

aProductModel

New (PM Name)

Add PM (aPM)

www.manaraa.com

Phd Thesis - Spring 98 101

Use Cases for Modeler

A 1.2.7 Edit Product Model

Flow of Events:

1. The user select a Product Model from the Product Library window.
2. The user selects the “Edit Product Model” command from the Product Library win-

dow.
3. The system displays the selected Product Model in the Product Model Editor win-

dow.

Preconditions: A Product Model is selected in the Product Library window.

Interface Design:

Interaction Diagram 41. Editing a Product Model

aProductLibraryWinaUser aProductEditorWin

Display (PM)

Select Product

Edit PM

Note: PM = Product Model

www.manaraa.com

102 Phd Thesis - Spring 98

A 1.2.8 Rename Product Model

Flow of Events:

1. The user selects the “Rename Product Model” command from the Product Library
window.

2. The system displays a Set Name dialog asking the user for the new name.
3. The user types in the name and confirms.
4. The systems sends a “Rename” command to the Product Model object, and updates

the interface accordingly.

Preconditions: A Product Model is selected in the Product Library window.

Interface Design:

Interaction Diagram 42. Renaming Product Model

aProductLibWin

Enter New Name

Rename PM

aSetNameDialogaUser

New Name

Update interface

New Name

aProductModel

Rename (New Name)

Note: PM = Product Model

www.manaraa.com

Phd Thesis - Spring 98 103

Use Cases for Modeler

A 1.2.9 Copy Product / Product Model

Flow of Events:

1. The user selects a Product or a Product Model from the Product Library window.
2. The user selects the “Copy” command from the Product Library window.
3. The system sends a “Deep Clone” command to the selected object and saves it in the

system clipboard.

Preconditions: A Product or a Product Model is selected in the Product Library window.

Interface Design:

Interaction Diagram 43. Copying a Product or a Product Model

aProductLibWin

Select Product / PM

aUser

New

aProduct/aPM

DeepClone

Note: PM = Product Model

Copy Product / PM

aClipboard

Add (anthrProduct / PM)

anthrProduct/aPM

www.manaraa.com

104 Phd Thesis - Spring 98

A 1.2.10 Paste Product Model

Flow of Events:

1. The user selects a Product then selects the “Paste” command from the Product
Library window.

2. If the object in the system clipboard is a Product Model, the system sends it a “Deep
Clone” command, adds the resulting clone to the selected Product and updates the
interface.

Preconditions: A Product is selected in the Product Library window and a Product Model
is already copied to the system clipboard.

Interface Design:

Interaction Diagram 44. Pasting a Product

aProductLibWin

Paste PM

aUser

New

aPM

DeepClone

aClipboard

Add (aProductModel)

DeepClone

aProduct

Update interface

aPM

www.manaraa.com

Phd Thesis - Spring 98 105

Use Cases for Modeler

A 1.2.11 Cut (Remove) Product

Flow of Events:

1. The user selects a Product from the Product Library window.
2. The user selects the “Cut” command from the Product Library window.
3. The system sends a “Deep Clone” command to the selected object, save the resulting

clone in the system clipboard, and deletes the selected object.

Preconditions: A Product is selected in the Product Library window.

Interface Design:

Interaction Diagram 45. Removing a Product

aProductLibWin

Select Product

aUser

New

aProduct

DeepClone
Cut Product

aClipboard

Add (antherProduct)

Delete

anthrProduct

www.manaraa.com

106 Phd Thesis - Spring 98

A 1.2.12 Cut (Remove) Product Model

Flow of Events:

1. The user selects a Product Model from the Product Library window.
2. The user selects the “Cut” command from the Product Library window.
3. The system sends a “Deep Clone” command to the selected object, saves it in the sys-

tem clipboard and deletes the selected object.

Preconditions: A Product Model is selected in the Product Library window.

Interface Design:

Interaction Diagram 46. Removing a Product Model

aProductLibWin

Select PM

aUser

New

aProductModel

DeepClone

Note: PM = Product Model

Cut PM

aClipboard

Add (anthrPM)

anthrPM

Delete

www.manaraa.com

Phd Thesis - Spring 98 107

Use Cases for Modeler

A 1.2.13 Create Specification Category

Flow of Events:

1. The user selects the “Create Specification Category” command from the Product Edi-
tor window.

2. The system displays the Set Name dialog prompting the user for a name.
3. The user types in the name and confirms.
4. The system creates a new Specification Category with the given name, adds it to the

Product Model and updates the interface accordingly.

Preconditions: A Product Editor window is displayed.

Interaction Diagram 47. Creating a Specification Category

aProductEditorWin

Create SC

aUser

New (Name)

aSetNameDialog

Display

Note: SC = Specification Category, PM = Product Model

aProductModel

Name

aSpecCategory

Enter Name

Name

Add Category (aSpecCategory)

Update Interface

www.manaraa.com

108 Phd Thesis - Spring 98

Interface Design:

www.manaraa.com

Phd Thesis - Spring 98 109

Use Cases for Modeler

A 1.2.14 Rename Specification Category

Flow of Events:

1. The user selects the “Rename Specification Category” command from the Product
Editor window.

2. The system displays the Rename Item dialog box.
3. The user makes the changes in the window and confirms.
4. The system updates its corresponding Specification Category object, and updates the

interface accordingly.

Preconditions: A Specification Category is selected in the Product Editor window.

Interface Design:

Interaction Diagram 48. Renaming a Specification Category

aProductEditorWin

Select SC

aUser aRenItemDiag

Display

Note: SC = Specification Category

SetName(Name)

aSpecCategory

Update

Edit SC

www.manaraa.com

110 Phd Thesis - Spring 98

A 1.2.15 Create Specification Primitive

Flow of Events:

1. The user selects a “Create New Attribute” command from the Product Editor win-
dow. There are five types of attributes that user can choose from: integer, floating
point, string, boolean, and enumerated.

2. The system displays the Set Name dialog prompting the user for a name.
3. The user enters a name and confirms.
4. The system creates a new Specification Primitive, adds it to the selected specification

category, and updates the interface accordingly.

Preconditions: A Specification Category is selected in the Product Editor window.

Interaction Diagram 49. Creating a Specification Primitive

aProductEditorWin

Select SC

aUser aSpecPrimitive

New(Name)

Note: SC = Specification Category, SP= SpecPrimitive

aSpecCategory

Add Component (aSpecPrimitve)

Name

Update

aSetNameDialog

Display

Enter Name

Name

www.manaraa.com

Phd Thesis - Spring 98 111

Use Cases for Modeler

Interface Design:

www.manaraa.com

112 Phd Thesis - Spring 98

A 1.2.16 Rename Specification Primitive

Flow of Events:

1. The user selects the “Rename Specification Primitive” command from the Product
Editor window.

2. The system displays the Rename Item dialog box.
3. The user makes the changes in the dialog box and confirms.
4. The system updates its corresponding Specification Primitive object, and updates the

interface accordingly.

Preconditions: A Specification Primitive is selected in the Product Editor window.

Interface Design:

Interaction Diagram 50. Renaming a Specification Primitive

aProductLibWin

Select SP

aUser aRenItemDiag

Display

Note: SP = Specification Primitive

SetName(Name)

aSpecPrimitive

Update

Edit SP

www.manaraa.com

Phd Thesis - Spring 98 113

Use Cases for Modeler

A 1.2.17 Cut Product Modeling Element

Flow of Events:

1. A Product Modeling Element refers any one of the the entities that constitute a Prod-
uct Model. These are Specification Categories and Primitives, Classification Groups
and Classifiers, and Relation Types. The user selects a Product Modeling Element
from the Product Editor window.

2. The user selects the “Cut” command from the Product Editor window.
3. The system removes the selected object from the Product Model, and clones it.
4. The system then deletes the selected object and saves the clone in the system clip-

board.

Preconditions: A Product Modeling Element is selected in the Product Editor window.

Interaction Diagram 51. Removing a Product Modeling Element

aProductEditorWin

Select PME

aUser

New

aPME

DeepClone

Note: PME refers to a Specification Category / Primitive, Classification Group, Classifier or Relation Type instance

Cut PME

aClipboard

Add (anthrSC)

anthrPME

Delete

aPMEContainer

Remove(aPME)

www.manaraa.com

114 Phd Thesis - Spring 98

Interface Design:

www.manaraa.com

Phd Thesis - Spring 98 115

Use Cases for Modeler

A 1.2.18 Copy Product Modeling Element

Flow of Events:

1. A Product Modeling Element refers any one of the the entities that constitute a Prod-
uct Model. These are Specification Categories and Primitives, Classification Groups
and Classifiers, and Relation Types. The user selects a Product Modeling Element
from the Product Editor window.

2. The user selects the “Copy” command from the Product Editor window.
3. The system clones the selected object and saves the clone in the system clipboard.

Preconditions: A Product Modeling Element is selected in the Product Editor window.

Interface Design:

Interaction Diagram 52. Copying a Product Modeling Element

aProductEditorWin

Select SP

aUser

New

aSC/aSP

DeepClone
Copy SP

aClipboard

Add (anthrSP)

anthrSC/anthrSP

Note: PME refers to a Specification Category / Primitive, Classification Group, Classifier or Relation Type instance

www.manaraa.com

116 Phd Thesis - Spring 98

A 1.2.19 Paste Specification Primitive

Flow of Events:

1. The user selects a Specification Category from the Product Editor window.
2. The user selects the “Paste” command from the Product Editor window.
3. If the clipboard object is a Specification Primitive, the system clones it and adds the

clone to the selected Specification Category, and updates the display accordingly.

Preconditions: A Specification Category is selected in the Product Editor window and a
Specification Primitive object exists in the clipboard.

Interaction Diagram 53. Pasting a Specification Primitive

aProductEditorWin

Select SC (aSC)

aUser

New
Add (aSP)

Note: SC = Specification Category, SP = Specification Primitive

aClipboard

Update

aSP

DeepClone

aSC

Paste SP

www.manaraa.com

Phd Thesis - Spring 98 117

Use Cases for Modeler

Interface Design:

Copied Primitive

www.manaraa.com

118 Phd Thesis - Spring 98

A 1.2.20 Create Classification Group

Flow of Events:

1. The user selects the “Create Classification Group” command from the Product Editor
window.

2. The system displays the Set Name dialog prompting the user for a name.
3. The user types in the name and confirms.
4. The system creates a new classification group with the given name, adds it to the

Product Model and updates the interface accordingly.

Preconditions: A Product Editor window is displayed.

Interaction Diagram 54. Creating a Classification Group

aProductEditorWin

Create CG

aUser

New (Name)

aSetNameDialog

Display

Note: CG = Classification Group, PM = Product Model

aProductModel

Name

aCG

Enter Name

Name

Add CG (aCG)

Update Interface

www.manaraa.com

Phd Thesis - Spring 98 119

Use Cases for Modeler

Interface Design:

www.manaraa.com

120 Phd Thesis - Spring 98

A 1.2.21 Rename Classification Group

Flow of Events:

1. The user selects the “Edit Classification Group” command from the Product Editor
window.

2. The system displays the Classification Group Editor window.
3. The user makes the changes in the window and confirms.
4. The system updates its corresponding classification group object, and updates the

interface accordingly.

Preconditions: A classification group is selected in the Product Editor window.

Interface Design:

Interaction Diagram 55. Editing a Classification Group

aProductEditorWin

Select CG

aUser aRenItemDiag

Display

SetName(Name)

aClassificationGroup

Update

Edit CG

Note: CG = Classification Group

www.manaraa.com

Phd Thesis - Spring 98 121

Use Cases for Modeler

A 1.2.22 Create Classifier

Flow of Events:

1. The user selects a classification group from the Product Editor window.
2. The user selects the “Create Classifier” command from the Product Editor window.
3. The system displays the Set Name dialog prompting the user for a name.
4. The user types in the name and confirms.
5. The system creates a new classifier with the given name, adds it to the selected classi-

fication group and updates the interface accordingly.

Preconditions: A classification group is selected in the Product Editor window.

Interaction Diagram 56. Creating a Classifier

aProductEditorWin

Create Classifier

aUser

New (Name)

aSetNameDialog

Display

Note: CG = Classification Group

aCG

Name

aClassifier

Enter Name

Name

Add Classifier (aClassifier)

Update Interface

Select CG

www.manaraa.com

122 Phd Thesis - Spring 98

Interface Design:

www.manaraa.com

Phd Thesis - Spring 98 123

Use Cases for Modeler

A 1.2.23 Edit Classifier

Flow of Events:

1. The user selects a classifier from the Product Editor window.
2. The user selects the “Edit Classifier” command from the Product Editor window.
3. The system displays the Classifier Editor window.
4. The user makes the changes in the window are:

- unallowable classifications of the corresponding specification unit parent, and
- unallowable classifications of the corresponding specification unit constituents

5. The user then confirms the changes and closes the Classifier Editor window.
6. The system updates its corresponding classifier object, and updates the interface

accordingly.

Preconditions: A classifier is selected in the Product Editor window.

Interaction Diagram 57. Editing a Classifier

aProductEditorWin

Select Classifier

aUser aClassifierEditorWin

Display

aClassificationGroup

Update

Edit Classifier

SetContainer(contCl)

SetConstituents(constCl)

www.manaraa.com

124 Phd Thesis - Spring 98

Interface Design:

www.manaraa.com

Phd Thesis - Spring 98 125

Use Cases for Modeler

A 1.2.24 Paste Classifier

Flow of Events:

1. The user selects a classification group from the Product Editor window.
2. The user selects the “Paste Classifier” command from the Product Editor window.
3. If the clipboard object is a classifier, the system clones it and adds the clone to the

selected classifier group, and updates the display accordingly.

Preconditions: A classification group is selected in the Product Editor window and a clas-
sifier object exists in the clipboard.

Interaction Diagram 58. Pasting a Specification Primitive

aProductEditorWin

Select CG (aCG)

aUser

New
Add (aClassifier)

Note: CG = Classification Group

aClipboard

Update

aClassifier

DeepClone

aCG

Paste Classifier

www.manaraa.com

126 Phd Thesis - Spring 98

Interface Design:

www.manaraa.com

Phd Thesis - Spring 98 127

Use Cases for Modeler

A 1.2.25 Create Relation Type

Flow of Events:

1. The user selects the “Create Relation Type” command from the Product Editor win-
dow.

2. The system displays the Set Name dialog prompting the user for a name.
3. The user types in the name and confirms.
4. The system creates a new Relation Type with the given name, adds it to the Product

Model and updates the interface accordingly.

Preconditions: A Product Editor window is displayed.

Interaction Diagram 59. Creating a Relation Type

aProductEditorWin

Create RT

aUser

New (Name)

aSetNameDialog

Display

Note: RT = Relation Type

aProductModel

Name

aRT

Enter Name

Name

Add RT (aRT)

Update Interface

www.manaraa.com

128 Phd Thesis - Spring 98

Interface Design:

www.manaraa.com

Phd Thesis - Spring 98 129

Use Cases for Modeler

A 1.2.26 Rename Relation Type

Flow of Events:

1. The user selects the “Rename Relation Type” command from the Product Editor win-
dow.

2. The system displays the Rename Item dialog box.
3. The user makes the changes in the dialog box and confirms.
4. The system updates its corresponding Relation Type object, and updates the interface

accordingly.

Preconditions: A Relation Type is selected in the Product Editor window.

Interface Design:

Interaction Diagram 60. Rename a Relation Type

aProductEditorWin

Select RT

aUser aRTEditorWin

Display

Note: RT = Relation Type

SetName(Name)

aRelationType

Update

SetDescription(Desc)

Edit RT

www.manaraa.com

130 Phd Thesis - Spring 98

A 1.2.27 Create Generation Mechanism

Flow of Events:

1. The user selects the “Create Generation Mechanism” command from the Product
Editor window.

2. The system displays the Set Name dialog prompting the user for a name.
3. The user types in the name and confirms.
4. The system creates a new generation mechanism with the given name, adds it to the

Product and displays the Generation Manager window showing the newly created
mechanism.

Preconditions: A Product Editor window is displayed.

Interaction Diagram 61. Creating a Generation Mechanism

aProductEditorWin

Create GM

aUser

New (Name)

aSetNameDialog

Display

Note: GM = Generation Mechanism

aProduct

Name

aGM

Enter Name

Name

Add GM (aGM)

Update Interface

aGenManagerW

Display (aGM)

www.manaraa.com

Phd Thesis - Spring 98 131

Use Cases for Modeler

Interface Design:

www.manaraa.com

132 Phd Thesis - Spring 98

A 1.2.28 Setup Generation Mechanism

Flow of Events:

1. The user selects an existing Generation Mechanism from the Generation Menu of the
Product Editor window, or creates a new one using the Create Generation Mecha-
nism use case.

2. The system displays the Generation Manager window.
3. The user selects the input Product Model from the Input menu, then selects the out-

put model from the output menu.
4. As changes are made, the corresponding Generation Mechanism object gets updated

and the Generation Mechanism window updates its interface to reflect the changes
made.

Preconditions: A Generation Mechanism exists in the current Product.

Interaction Diagram 62. Setting up a Generation Mechanism

aProductEditorWin

Select GM

aUser aGenManagerWin

Display (aGM)

Note: GM = Generation Mechanism, PM = Product Model

aGM

Set Input PM (aPM)

Update Interface

Set Output PM (aPM)

Update Interface

www.manaraa.com

Phd Thesis - Spring 98 133

Use Cases for Modeler

Interface Design:

www.manaraa.com

134 Phd Thesis - Spring 98

A 1.2.29 Show Generation Report

Flow of Events:

1. In the Generation Manager window, the user selects the “Show Generation Report”
command.

2. The system displays the Generation Report window updated with the latest values
from the current Generation Mechanism.

Preconditions: The Generation Manager window is displayed.

Interaction Diagram 63. Displaying Generation Report

Show GR

aUser aGenManagerWin

Note: GP = Generation Mechanism, GR = Generation Report

aGenReport

Display

aGM

Get Mappings

Update Interface

www.manaraa.com

Phd Thesis - Spring 98 135

Use Cases for Modeler

Interface Design:

(Click)

www.manaraa.com

136 Phd Thesis - Spring 98

A 1.2.30 Direct-Map Specification Primitives

Flow of Events:

1. In the Generation Manager window, the user selects a Specification Primitive from
the input Product Model, and another from the output Product Model, and selects
the “Direct-Map Primitives” command.

2. The system creates a new Specification Primitive Map object and adds it to the cur-
rent Generation Mechanism and updates the Generation Report accordingly.

Preconditions: A Specification Primitives of compatible types are selected, one from the
input Product Model and another from the output model.

Interaction Diagram 64. Direct-Mapping Specification Primitives

Select Input SP(SP1)

aUser aGenManagerWin

Direct-Map SP

Note: SP = Specification Primitive, GM = Generation Mechanism

aSPMap

New (SP1,SP2)

Select Output SP(SP2)

aGM

Add (aSPMap)

Update Interface

www.manaraa.com

Phd Thesis - Spring 98 137

Use Cases for Modeler

Interface Design:

www.manaraa.com

138 Phd Thesis - Spring 98

A 1.2.31 Formula-Map Specification Primitive

Flow of Events:

1. In the Generation Report section of the Generation Manager window, the user selects
a Specification Primitive Map.

2. The system activates the Attribute Formula field where the Modeler can enter the
mathematical expression to be used by the selected mapping.

3. The user builds the formula in that window by combining Specification Primitives
from the input model with the mathematical operators (*, /, -, +) and confirms.

4. The system updates the corresponding Formula Map object.

Preconditions: A Specification Primitive Map exist in the Generation Report.

Interaction Diagram 65. Formula-Mapping Specification Primitives

Build Formula & Confirm

aUser aGenManagerWin

Formula-Map SP

Note: SP = Specification Primitive, GM = Generation Mechanism, FM = Formula Map

aFM

New (SP1)

Select Output SP(SP1)

aGM

Add (aSPMap)

aFrmEditW

Display (aFM)

Update

Close

www.manaraa.com

Phd Thesis - Spring 98 139

Use Cases for Modeler

Interface Design:

1

2
3

www.manaraa.com

140 Phd Thesis - Spring 98

A 1.2.32 Map Classifiers

Flow of Events:

1. In the Generation Manager window, the user selects a Classifier from the input Prod-
uct Model, and another from the output Product Model, and selects the “Map Classi-
fier” command.

2. The system creates a new Classifier Map object and adds it to the current Generation
Mechanism and updates the interface accordingly.

Preconditions: Classifiers exist in the output and input Product Models.

Interaction Diagram 66. Mapping Classifiers

Select Input CL(CL1)

aUser aGenManagerWin

Map CL

Note: CL =Classifier, CMap = Classifier Map, GM = Generation Mechanism

aCMap

New (CL1, CL2)

Select Output CL(CL2)

aGM

Add (aCMap)

Update Interface

www.manaraa.com

Phd Thesis - Spring 98 141

Use Cases for Modeler

Interface Design:

www.manaraa.com

142 Phd Thesis - Spring 98

A 1.2.33 Map Relation Type

Flow of Events:

1. In the Generation Manager window, the user selects a Relation Type from the input
Product Model, and another from the output Product Model, and selects the “Map
Relation Type” command.

2. The system creates a new Relation Map object and adds it to the current Generation
Mechanism and updates the interface accordingly.

Preconditions: Relation Types exist in the output and input Product Models.

Interaction Diagram 67. Mapping Relation Types

Select Input CL(CL1)

aUser aGenManagerWin

Map CL

Note: RT =Relation Type, RTMap = relation Map, GM = Generation Mechanism

aCMap

New (CL1, CL2)

Select Output CL(CL2)

aGM

Add (aCMap)

Update Interface

www.manaraa.com

Phd Thesis - Spring 98 143

Use Cases for Modeler

Interface Design:

www.manaraa.com

144 Phd Thesis - Spring 98

A 1.2.34 Create Specialized Mapping

Flow of Events:

1. In the Generation Manager window, the user selects a Classifier Map from the Gener-
ation Report. The user then applies the Direct-Map Specification Primitives use case
to create Specification Primitive Maps.

2. Since a Classifier Map is selected, the newly created maps are added as sub-nodes of
the selected Classifier Map, indicating that they are applied only when their Classi-
fier Map is used.

Preconditions: A Classifier Map exists in the Generation Report.

Interaction Diagram 68. Setting Generation Parameters

Select Input SP(SP1)

aUser aGenManagerWin

Direct-Map SP

Note: SP = Specification Primitive, GM = Generation Mechanism

aSPMap

New (SP1,SP2)

Select Output SP(SP2)

aClassifierMap

Add (aSPMap)

Update Interface

Select Classifier Map

www.manaraa.com

Phd Thesis - Spring 98 145

Use Cases for Modeler

Interface Design:

1 (Select Classifier Map)

2

3

www.manaraa.com

146 Phd Thesis - Spring 98

A 1.3 Use Cases for Designer

The use case in this section describe the functionalities pertaining to the creation of
products using the prototypical Products and Product Models stored in the system
library. It allows for the manipulation of these specifications as well as generating out-
puts according to the generation mechanisms associated with the product. The use cases
are:

1. Copy Product [page 156]

2. Copy Specification Unit [page 162]

3. Create Project [page 147]

4. Create Specification Unit [page 159]

5. Cut Product [page 157]

6. Cut Specification Unit [page 161]

7. Edit Specification Unit [page 165]

8. Generate Output [page 167]

9. Open Project [page 149]

10. Paste Product [page 158]

11. Paste Specification Unit [page 163]

12. Rename Product [page 155]

13. Rename Project [page 153]

14. Save Project [page 151]

15. Select Generation Mechanism [page 166]

16. Set Input Product Model [page 154]

www.manaraa.com

Phd Thesis - Spring 98 147

Use Cases for Designer

A 1.3.1 Create Project

Flow of Events:

1. The user selects and copies a Product from the Product Library window.
2. The user selects the “Create New Project” command from the Projects window.
3. The system creates a new Project and displays it in the Projects window.
4. The user selects the newly created project, then selects the “Paste” command.
5. The system adds the copied product to the selected project and updates the interface

accordingly.

Preconditions: A Product is selected in the Product Library window.

Interaction Diagram 69. Creating a New Project

aProductLibWin

Select (aProduct)

aUser

New

anthrProduct

DeepClone

Note: PM = Product Model

Copy (aProduct)

aProject

Add Product

aProduct

New

aProjectWin

New Project

Select (aProject)

Paste (anthrProduct)

Update Interface

 (anthrProduct)

www.manaraa.com

148 Phd Thesis - Spring 98

Interface Design:

www.manaraa.com

Phd Thesis - Spring 98 149

Use Cases for Designer

A 1.3.2 Open Project

Flow of Events:

1. The user selects the “Open Project” command from the Main window.
2. The system displays the File dialog prompting the user for a file name.
3. The user types in the name or selects the file by navigating throught the file system

and confirms.
4. The system creates a new Project object and loads its information from the file and

displays the Project in the Projects window.

Preconditions: Main window is displayed, and a Project file exists on the file system.

Interaction Diagram 70. Opening an Existing Project

aMainWindow

Show
Open Project

aFileDialog

New (File descriptor)

aProjectWinaUser

Enter File name

File name

aProject

File descriptor

Show (aProject)

www.manaraa.com

150 Phd Thesis - Spring 98

Interface Design:

www.manaraa.com

Phd Thesis - Spring 98 151

Use Cases for Designer

A 1.3.3 Save Project

Flow of Events:

1. the user selects a Project from the Projects window.
2. The user selects the “Save Project” command from the Projects window.
3. If the Project has been save before the system moves to step (6)
4. The system displays the File dialog prompting the user for a file name.
5. The user types in the name and confirms.
6. The system send a “Save” command to the Product Library object.

Preconditions: A Project is selected in the Projects window.

Interaction Diagram 71. Saving a Project

aProjectWin

Show
Save Project

aFileDialog

Save ([File Name])

aUser

Enter File Name

File Name

aProject

File Name

Select Project

www.manaraa.com

152 Phd Thesis - Spring 98

Interface Design:

www.manaraa.com

Phd Thesis - Spring 98 153

Use Cases for Designer

A 1.3.4 Rename Project

Flow of Events:

1. The user selects the “Rename Project” command from the Projects window.
2. The system displays a Set Name dialog asking the user for the new name.
3. The user types in the name and confirms.
4. The systems sends a “Rename Project” command to the Project object, and updates

the interface accordingly.

Preconditions: A Project is selected in the Projects window.

Interface Design:

Interaction Diagram 72. Renaming a Project

aProjectWin

Enter new name

Rename Project

aSetNameDialogaUser

New Name

Update interface

New Name

aProject

Rename Project (New Name)

www.manaraa.com

154 Phd Thesis - Spring 98

A 1.3.5 Set Input Product Model

Flow of Events:

1. The user selects a Product Model for the Specification Model from the Specifications
Editor window.

2. The system sets the corresponding active Product Model according to the user selec-
tion.

Preconditions: The Specifications Editor window is displayed.

Interface Design:

Interaction Diagram 73. Setting the Specification Product Model

aSpecsEditorWin

Set Spec PM (aPM)

aUser

Note: PM = Product Model, PS = Product Specifications

Set Active PM (aPM)

aPS

www.manaraa.com

Phd Thesis - Spring 98 155

Use Cases for Designer

A 1.3.6 Rename Product

Flow of Events:

1. The user selects the “Rename Product” command from the Projects window.
2. The system displays a Set Name dialog asking the user for the new name.
3. The user types in the name and confirms.
4. The systems sends a “Rename Product” command to the Product object, and updates

the interface accordingly.

Preconditions: A Product is selected in the Projects window.

Interface Design:

Interaction Diagram 74. Renaming a Product in a Project

aProjectWin

Enter new name

Rename Product

aSetNameDialogaUser

New Name

Update interface

New Name

aProduct

Rename (New Name)

www.manaraa.com

156 Phd Thesis - Spring 98

A 1.3.7 Copy Product

Flow of Events:

1. The user selects a Product from the Projects window.
2. The user selects the “Copy” command from the Projects window.
3. The system sends a “Deep Clone” command to the selected Project and saves it in the

system clipboard.

Preconditions: A Product is selected in the Projects window.

Interface Design:

Interaction Diagram 75. Copying a Product

aProjectsWin

Select Product

aUser

New

aProduct

DeepClone
Copy Product

aClipboard

Add (anthrProduct)

anthrProduct

www.manaraa.com

Phd Thesis - Spring 98 157

Use Cases for Designer

A 1.3.8 Cut Product

Flow of Events:

1. The user selects a Product from the Projects window.
2. The user selects the “Cut” command from the Projects window.
3. The system sends a “Deep Clone” command to the selected Project, saves the result-

ing clone in the system clipboard, and deletes the selected object.

Preconditions: A Product is selected in the Projects window.

Interface Design:

Interaction Diagram 76. Removing a Product from a Project

aProjectsWin

Select Product

aUser

New

aProduct

DeepClone
Cut Product

aClipboard

Add (antherProduct)

Delete

anthrProduct

www.manaraa.com

158 Phd Thesis - Spring 98

A 1.3.9 Paste Product

Flow of Events:

1. The user selects a Project in the Projects window.
2. The user selects the “Paste Product” command from the Projects window.
3. If the object in the system clipboard is a Product, the system sends it a “Deep Clone”

command, adds the resulting clone to the selected Project and updates the interface.

Preconditions: A Project is selected in the Projects window and a Product exists in the
system clipboard.

Interface Design:

Interaction Diagram 77. Pasting a Product to a Project

aProjectsWinaUser

New

aProduct

DeepClone

aClipboard

Add (aProduct)

DeepClone

aProject

Update interface

anthrProduct

Select (aProject)

Paste Product

www.manaraa.com

Phd Thesis - Spring 98 159

Use Cases for Designer

A 1.3.10 Create Specification Unit

Flow of Events:

1. The user selects the “Create New Specification Unit” command from the Specifica-
tions Editor window.

2. The system prompts the user for a name. The user enters the name and confirms.
3. The system creates a new Specification Unit, clones the active Product Model and

adds it to the new Specification Unit.
4. It then adds the new Specification Unit to the current Product Specifications and

updates the interface accordingly.
5. If a Specification Unit was selected before the start of this use case, the new Specifica-

tion Unit will be added as its constituent.

Preconditions: The Specifications Editor window is displayed.

Interaction Diagram 78. Creating a Specification Unit

aSpecsEditorWinaUser

New

anthrPM

DeepClone

Note: SU = Specification Unit, PM = Product Model

New SU

aSU

Set PM (anthrPM)

aPM

New

aProductSpecs

Get Active PM <= aPM

Enter Name

Name

Add SU(aSU)

Update

www.manaraa.com

160 Phd Thesis - Spring 98

Interface Design:

www.manaraa.com

Phd Thesis - Spring 98 161

Use Cases for Designer

A 1.3.11 Cut Specification Unit

Flow of Events:

1. The user selects a Specification Unit from the Specifications Editor window.
2. The user selects the “Cut” command from the Specifications Editor window.
3. The system sends a “Deep Clone” command to the selected Specification Unit, saves

the resulting clone in the system clipboard, and deletes the selected object.

Preconditions: A Specification Unit is selected in the Specifications Editor window.

Interface Design:

Interaction Diagram 79. Removing a Specification Unit

aSpecsEditorWin

Select SU

aUser

New

aSU

DeepClone
Cut SU

aClipboard

Add (anthrSU)

Delete

anthrSU

Note: SU = Specification Unit

www.manaraa.com

162 Phd Thesis - Spring 98

A 1.3.12 Copy Specification Unit

Flow of Events:

1. The user selects a Specification Unit from the Specifications Editor window.
2. The user selects the “Copy” command from the Specifications Editor window.
3. The system sends a “Deep Clone” command to the selected Specification Unit and

saves it in the system clipboard.

Preconditions: A Specification Unit is selected in the Specifications Editor window.

Interface Design:

Interaction Diagram 80. Copying a Specification Unit

aSpecsEditorWin

Select SU

aUser

New

aSU

DeepClone
Copy SU

aClipboard

Add (anthSU)

anthrSU

Note: SU = Specification Unit

www.manaraa.com

Phd Thesis - Spring 98 163

Use Cases for Designer

A 1.3.13 Paste Specification Unit

Flow of Events:

1. The user selects the “Paste Specification Unit” command from the Specifications Edi-
tor window.

2. If the object in the system clipboard is a Specification Unit, the system sends it a
“Deep Clone” command, adds the resulting clone to the current Product Specifica-
tions and updates the interface.

3. If a Specification Unit was selected before the start of this use case, the pasted Specifi-
cation Unit will be added as its constituent.

Preconditions: The Specifications Editor window is displayed and a Specification Unit
exists in the system clipboard.

Interaction Diagram 81. Pasting a Specification Unit

aSpecsEditorWinaUser

New

aSU

DeepClone

aClipboard

Add (aSU)

DeepClone

aPS

Update interface

anthrSU

Select (aSU)

Paste SU

Note: SU = Specification Unit, PS = Product Specifications

www.manaraa.com

164 Phd Thesis - Spring 98

Interface Design:

www.manaraa.com

Phd Thesis - Spring 98 165

Use Cases for Designer

A 1.3.14 Edit Specification Unit

Flow of Events:

1. The user selects a Specification Unit from the Specifications Editor window then
selects the “Edit Specification Unit” command.

2. The system displays the Specification Unit Editor window for the selected Specifica-
tion Unit.

3. In the Specification Unit Editor window, the user can set attribute values for the
selected Specification Unit, set its classifications and relations to other Specification
Units and set the generation parameters to override those of the generation mecha-
nism.

Preconditions: A Specification Unit is selected in the Specifications Editor window.

Interface Design:

Interaction Diagram 82. Editing Specification Unit

aSpecUnitEditorWin

Select SU

aUser aSpecsEditorWin

Edit SU
Display

Note: SU = Specification Unit

www.manaraa.com

166 Phd Thesis - Spring 98

A 1.3.15 Select Generation Mechanism

Flow of Events:

1. The user selects the “Set Generation Mechanism” command from the Specifications
Editor window.

2. The system sets the active Generation Mechanism of the current Product Specifica-
tions object according to the user selection.

Preconditions: The Specifications Editor window is displayed.

Interface Design:

Interaction Diagram 83. Updating Specification Unit Settings from Product Model Defaults

aSpecsEditorWinaUser

Set Active GM (aGM)

aProductSpecs

Set (aGM)

Note: SU = Specification Unit, GM = Generation Mechanism

www.manaraa.com

Phd Thesis - Spring 98 167

Use Cases for Designer

A 1.3.16 Generate Output

Flow of Events:

1. The user selects the “Generate Output” command from the Specifications Editor win-
dow.

2. The system prompt the user for a name for new output. The user enters the name and
confirms.

3. The system uses the active Generation Mechanism of the current Product Specifica-
tions object to generate an output from the specifications.

4. The generated output is then added to the current Product then displayed in the out-
put panel of the Specifications Editor window.

Preconditions: Specifications Units exist in the Specifications Editor window, and a Gen-
eration Mechanism has been selected for the current Product Specifications.

Interaction Diagram 84. Generating an Output from Product Specifications

aSpecsEditorWinaUser

Get Active GM <=aGM

aProductSpecs

Generate Output

aGM aPO

Generate Output
New

Note: PO = Product Output, GM = Generation Mechanism

aProduct

Add Output (aPO)

Enter Name

Name

Update interface

www.manaraa.com

168 Phd Thesis - Spring 98

Interface Design:

www.manaraa.com

Phd Thesis - Spring 98 169

APPENDIX 2

System Object Models

This appendix contains the system object model using the the OMT notation [Rum-
baugh et al. 91].

A 2.1 Domain Object Models

A 2.1.1 The Product Modeling Module

Module Objects and Relations

classifiers
(represents “or”)

classifier_groups
(represents “and”)

RelationType

model_prototypes

products

Product ProductLib

relation_types

SpecElement
components

SpecPrimitive

enumerations

SpecCategory

EnumeratedPrimitiveBooleanPrimitiveFloatingPointPrimitiveIntegerPrimitive

categoriesSPClassifier

ClassifierGroup

StringPrimitive

ProductModel

SPRelation
relations

www.manaraa.com

170 Phd Thesis - Spring 98

Object Attributes and Methods

ProductLib

#name:char *
#libFile:Data *

+ProductLib(nm:char *)
+~ProductLib
+GetName:char *
+SetName(nm:char *):bool
+AddProduct(pr:Product *):bool
+RemoveProduct(pr:Product *):bool
+GetProducts():SeqCollection *
+PrintOn(&s:OStream):OStream &
+ReadFrom(&s:IStream):IStream &
+GetFile():Data *
+SetFile(fl:Data *)

Product

+name:char *
#description:char *

+Product(nm:char *)
+~Product
+%Project::
+PrintOn(&s:OStream):OStream &
+ReadFrom(&s:IStream):IStream &
+SetName(nm:char *):bool
+GetName():char *
+SetDescription(des:char *):bool
+GetDescription():char *
+SetProject(pr:Project *):bool
+GetProject():Project *
+AddModel(md:ProductModel *):bool
+RemoveModel(md:ProductModel *):bool
+GetModels():SeqCollection *
+SetSpecs(sp:ProductConstruct *):bool
+GetSpecs():ProductConstruct *
+AddOutput(po:ProductConstruct *):bool
+RemoveOutput(po:ProductConstruct *):bool
+GetOutputs():SeqCollection *
+AddGM(gm:GenMechanism *):bool
+RemoveGM(gm:GenMechanism *):bool
+GetGMs():SeqCollection *

ProductModel

+name:char *
#description:char *

+ProductModel(nm:char *,pr:Product *)
+~ProductModel
+%Product::
+PrintOn(&s:OStream):OStream &
+ReadFrom(&s:IStream):IStream &
+SetName(nm:char *):bool
+GetName():char *
+AddClGroup(cg:ClassifierGroup *):bool
+RemoveClGroup(cg:ClassifierGroup *):bool
+GetClGroups():SeqCollection *
+AddRelType(rt:RelationType *):bool
+RemoveRelType(rt:RelationType *):bool
+GetRelTypes():SeqCollection *
+AddSpecCategory(sc:SpecCategory *):bool
+RemoveSpecCategory(sc:SpecCategory *):bool
+GetSpecCategories():SeqCollection *
+SetProduct(pr:Product *):bool
+GetProduct():Product *

www.manaraa.com

Phd Thesis - Spring 98 171

Domain Object Models

Object Attributes and Methods (contd.)

SPNameTag

+name:char *

+SPNameTag(nm:char *)
+~SPNameTag
+SetName(nm:char *)
+GetName():char *
+PrintOn(&s:OStream):OStream &
+ReadFrom(&s:IStream):IStream &

ClassifierGroup

+name:char *
#description:char *
+activeClassifier:SPClassifier *

+ClassifierGroup(nm:char *)
+~ClassifierGroup
+PrintOn(&s:OStream):OStream &
+ReadFrom(&s:IStream):IStream &
+AddClassifier(cl:SPClassifier *):bool
+RemoveClassifier(cl:SPClassifier *):bool
+GetClassifiers():SeqCollection *
+SetName(nm:char *):bool
+GetName():char *
+SetDescription(des:char *):bool
+GetDescription():char *

SPClassifier

+name:char *
#description:char *
+containerConstraints:SeqCollection *
+constituentsConstraints:SeqCollection *
#suffix:char *

+SPClassifier(nm:char *)
+~SPClassifier
+PrintOn(&s:OStream):OStream &
+ReadFrom(&s:IStream):IStream &
+SetName(nm:char *):bool
+SetSuffix(nm:char *)
+GetSuffix():char *
+GetName():char *
+SetDescription(des:char *):bool
+GetDescription():char *
+AddContConstraint(co:SPClassifier *):bool
+RemoveContConstraint(co:SPNameTag*):bool
+GetContConstraints():SeqCollection *
+AddConstConstraint(co:SPClassifier *):bool
+RemoveConstConstraint(co:SPNameTag *):bool
+GetConstConstraints():SeqCollection *
+CanClassify(su:SpecUnit *):bool
+FindClassifier(col:SeqCollection *,co:SPClassifier *):SPNameTag *
+IsContainerConstraint(co:SPClassifier *):bool
+IsConstituentConstraint(co:SPClassifier *):bool

www.manaraa.com

172 Phd Thesis - Spring 98

Object Attributes and Methods (contd.)

RelationType

+name:char *
#description:char *

+RelationType(nm:char *)
+~RelationType
+HasRelation(su1:SpecUnit *,su2:SpecUnit *):SPRelation *
+ReadFrom(&s:IStream):IStream &
+PrintOn(&s:OStream):OStream &
+SetName(nm:char *):bool
+GetName():char *
+SetDescription(des:char *):bool
+GetDescription():char *
+AddRelation(rel:SPRelation *):bool
+RemoveRelation(rel:SPRelation *):bool
+GetRelations():SeqCollection *

SPRelation

#relValue:float

+SPRelation(val:float,su1:SpecUnit *,su2:SpecUnit *)
+~SPRelation
+ReadFrom(&s:IStream):IStream &
+PrintOn(&s:OStream):OStream &
+SetValue(val:float):bool
+GetValue():float
+SetSU1(su:SpecUnit *):bool
+GetSU1():SpecUnit *
+SetSU2(su:SpecUnit *):bool
+GetSU2():SpecUnit *
+SetType(rt:RelationType *):bool
+GetType():RelationType *

www.manaraa.com

Phd Thesis - Spring 98 173

Domain Object Models

Object Attributes and Methods (contd.)

SpecElement

+name:char *
#description:char *

+SpecElement(nm:char *)
+~SpecElement
+PrintOn(&s:OStream):OStream &
+ReadFrom(&s:IStream):IStream &
+SetName(nm:char *):bool
+GetName():char *
+SetDescription(des:char *):bool
+GetDescription():char *

SpecCategory

+SpecCategory(nm:char *)
+~SpecCategory
+PrintOn(&s:OStream):OStream &
+ReadFrom(&s:IStream):IStream &
+AddComponent(se:SpecElement *):bool
+DeleteComponent(se:SpecElement *):bool
+GetSpecElements():SeqCollection *

SpecPrimitive

+SpecPrimitive(nm:char *)
+~SpecPrimitive

IntegerPrimitive

#value:int

+IntegerPrimitive(nm:char *)
+~IntegerPrimitive
+PrintOn(&s:OStream):OStream &
+ReadFrom(&s:IStream):IStream &
+SetValue(vp:int):bool
+GetValue():int

FloatingPointPrimitive

#value:float

+FloatingPointPrimitive(nm:char *)
+~FloatingPointPrimitive
+PrintOn(&s:OStream):OStream &
+ReadFrom(&s:IStream):IStream &
+SetValue(vp:float):bool
+GetValue():float

StringPrimitive

#value:char *

+StringPrimitive(nm:char *)
+~StringPrimitive
+PrintOn(&s:OStream):OStream &
+ReadFrom(&s:IStream):IStream &
+SetValue(vp:char *):bool
+GetValue():char *

BooleanPrimitive

#value:bool

+BooleanPrimitive(nm:char *)
+~BooleanPrimitive
+PrintOn(&s:OStream):OStream &
+ReadFrom(&s:IStream):IStream &
+SetValue(vp:bool):bool
+GetValue():bool

EnumeratedPrimitive

#selection:SpecPrimitive *

+EnumeratedPrimitive(nm:char *)
+~EnumeratedPrimitive
+PrintOn(&s:OStream):OStream &
+ReadFrom(&s:IStream):IStream &
+AddEnum(sp:SpecPrimitive *):bool
+DeleteEnum(sp:SpecPrimitive *):bool
+GetEnums():SeqCollection *
+GetSelection():SpecPrimitive *
+SetSelection(sel:SpecPrimitive *)

www.manaraa.com

174 Phd Thesis - Spring 98

A 2.1.2 The Generation Mechanism Module

Module objects and Relations

Object Attributes and Methods

ProductModel

gen_mechanisms

GenMechanism

input_model

output_model

SpecPrimitiveMapFormulaMap

specPrimMaps classifierMaps relationMaps

outRTinRToutCLinCLoutSPinSP

formula
maps

SpecPrimitive

ClassifierMap

SPClassifier

RelationMap

RelationType

Product

GenMechanism

#name:char *

+GenMechanism(nm:char *)
+~GenMechanism
-%Product::
+PrintOn(&s:OStream):OStream &
+ReadFrom(&s:IStream):IStream &
+SetName(nm:char *):bool
+GetName():char *
+SetSpecsModel(pm:ProductModel *):bool
+GetSpecsModel():ProductModel *
+SetOutputModel(om:ProductModel *):bool
+GetOutputModel():ProductModel *
+SetGenParameters(gp:GenParameters *):bool
+GetGenParameters():GenParameters *
+AddPrimMap(pm:SpecPrimitiveMap *):bool
+RemovePrimMap(pm:SpecPrimitiveMap *):bool
+GetPrimMaps():SeqCollection *
+AddFormulaMap(fm:FormulaMap *):bool
+RemoveFormulaMap(fm:FormulaMap *):bool
+GetFormulaMaps():SeqCollection *
+AddClassifierMap(cm:ClassifierMap *):bool
+RemoveClassifierMap(cm:ClassifierMap *):bool
+GetClassifierMaps():SeqCollection *
+AddRelMap(rm:RelationMap *):bool
+RemoveRelMap(rm:RelationMap *):bool
+GetRelMaps():SeqCollection *
+GetClassMap(su:SpecUnit *):ClassifierMap *
+GenerateOutput(inSU:SpecUnit *,outPC:ProductConstruct *,mapRelations:bool)
+MapRelations(inSU:SpecUnit *,outPC:ProductConstruct *)
+GetRelMapFor(rel:SPRelation *):RelationMap *

www.manaraa.com

Phd Thesis - Spring 98 175

Domain Object Models

Object Attributes and Methods (contd.)

SpecPrimitiveMap

+SpecPrimitiveMap
+~SpecPrimitiveMap
+PrintOn(&s:OStream):OStream &
+ReadFrom(&s:IStream):IStream &
+SetInSP(isp:SpecPrimitive *):bool
+GetInSP():SpecPrimitive *
+SetOutSP(osp:SpecPrimitive *):bool
+GetOutSP():SpecPrimitive *
+SetFormula(fm:FormulaMap *):bool
+GetFormula():FormulaMap *
+PerformMapping(inSU:SpecUnit *,outSU:SpecUnit *,outUnits:int=1)

FormulaMap

#formula:char *

+FormulaMap
+~FormulaMap
+SetFormula(fm:char *):bool
+GetFormula():char *
+PrintOn(&s:OStream):OStream &
+ReadFrom(&s:IStream):IStream &
+RunFormula(inSU:SpecUnit *,outNum:int):float
+ParseList(n:int*,inSU:SpecUnit *,outNum:int):float
+GetTokenType(ch:char):tokentype
+GetNumberToken(n:int *):float
+GetStringToken(n:int *,inSU:SpecUnit *):float
+ComputeFormula(numArray:float[],opArray:char *):float

tokentype:enum

NUMBER
OUTNUM
STRING
OPERATOR
LEFTPAR
RIGHTPAR
UNKNOWN

ClassifierMap

#createSuffix:bool
#supString:char *
#outUnits:int

+ClassifierMap
+~ClassifierMap
+PrintOn(&s:OStream):OStream &
+ReadFrom(&s:IStream):IStream &
+SetInCL(cl:SPClassifier *):bool
+GetInCL():SPClassifier *
+SetOutCL(cl:SPClassifier *):bool
+GetOutCL():SPClassifier *
+GetSupString():char *
+SetSupString(nm:char *):bool
+NameOutUnit(inSU:SpecUnit *,outSU:SpecUnit *,i:int)
+AddSPmap(sm:SpecPrimitiveMap *):bool
+RemoveSPmap(sm:SpecPrimitiveMap *):bool
+GetSPmaps():SeqCollection *
+PerformMapping(inSU:SpecUnit *,outPC:ProductConstruct *,gm:GenMechanism *)
+SetFormula(fm:FormulaMap *):bool
+GetFormula():FormulaMap *

www.manaraa.com

176 Phd Thesis - Spring 98

Object Attributes and Methods (contd.)

RelationMap

+RelationMap
+~RelationMap
+PrintOn(&s:OStream):OStream &
+ReadFrom(&s:IStream):IStream &
+SetInRel(irel:RelationType *):bool
+GetInRel():RelationType *
+SetOutRel(orel:RelationType *):bool
+GetOutRel():RelationType *
+PerformMapping(rel:SPRelation*,outPC:ProductConstruct *)

www.manaraa.com

Phd Thesis - Spring 98 177

Domain Object Models

A 2.1.3 The Design Requirements Module

Module objects and
Relations

Object Attributes and Methods

SPClassifier SpecCategory

SPRelation

SpecUnit

SPMapObject

Product

constituents

outputSUs

inputSU

SUs

classifiers categories

SU2

SU1

mapObjects

outputs

relation_types

specs

ProductConstruct
ProductModel

RelationType

GenMechanism

active_model

active_GM

Project

#name:char *
#description:char *
#projFile:Data *
#changed:bool=FALSE

+Project(nm:char *)
+~Project
+PrintOn(&s:OStream):OStream &
+ReadFrom(&s:IStream):IStream &
+GetName():char *
+SetName(nm:char *):bool
+SetProjFile(fd:Data *):bool
+GetProjFile:Data *
+AddProduct(pr:Product *):bool
+RemoveProduct(pr:Product *):bool
+GetProducts():SeqCollection *

SPMapObject

+SPMapObject(su:SpecUnit *)
+~SPMapObject
+PrintOn(&s:OStream):OStream &
+ReadFrom(&s:IStream):IStream &
+SetInSU(su:SpecUnit *):bool
+GetInSU():SpecUnit *
+AddOutSU(su:SpecUnit *):bool
+RemoveOutSU(su:SpecUnit *):Object *
+FindOutSU(su:SpecUnit *):SpecUnit *
+GetOutSUs():SeqCollection *

www.manaraa.com

178 Phd Thesis - Spring 98

Object Attributes and Methods (contd.)

ProductConstruct

+ProductConstruct(pr:Product *)
+~ProductConstruct

+PrintOn(&s:OStream):OStream &
+ReadFrom(&s:IStream):IStream &
+SetName(nm:char *):bool
+GetName():char *
+SetActiveModel(pd:ProductModel *):bool
+GetActiveModel():ProductModel *
+AddRelType(rt:RelationType *):bool
+RemoveRelType(rt:RelationType *):bool
+GetRelTypes():SeqCollection *
+GetRelation(rt:RelationType *,su1:SpecUnit *,su2:SpecUnit *):SPRelation *
+RemoveRelationsFor(su:SpecUnit *)
+GetRelationsFor(su:SpecUnit *):SeqCollection *
+AddSU(su:SpecUnit *):bool
+RemoveSU(su:SpecUnit *):bool
+GetSUs():SeqCollection *
+SetProduct(pr:Product *):bool
+GetProduct():Product *
+GetActiveGM():GenMechanism *
+SetActiveGM(gm:GenMechanism *):bool
+CreateSpecUnit(nm:char *):SpecUnit *
+AddMapObject(mo:SPMapObject *):bool
+RemoveMapObject(mo:SPMapObject *):bool
+GetMapObjects():SeqCollection *
+CreateMapping(inSU:SpecUnit *,newSU:SpecUnit *)
+RemoveSpecsMap(su:SpecUnit *):bool
+RemoveOutMap(su:SpecUnit *):bool
+GetMapObjectFor(su:SpecUnit *):SPMapObject *

www.manaraa.com

Phd Thesis - Spring 98 179

Domain Object Models

Object Attributes and Methods (contd.)

SpecUnit

+name:char *
#description:char *

+SpecUnit(nm:char *)
+~SpecUnit
+%ProductConstruct::
+CheckClassification(su:SpecUnit *):bool
+PrintOn(&s:OStream):OStream &
+ReadFrom(&s:IStream):IStream &
+SetName(nm:char *):bool
+GetName():char *
+SetDescription(des:char *):bool
+GetDescription():char *
+IsParent(su:SpecUnit *):bool
+AddConst(su:SpecUnit *):bool
+RemoveConst(su:SpecUnit *):bool
+GetConstList():SeqCollection *
+SetContainer(su:SpecUnit *):bool
+GetContainer():SpecUnit *
+SetProductConst(pc:ProductConstruct *):bool
+GetProductConst():ProductConstruct *
+SetCategories(sc:SeqCollection *):bool
+GetCategories():SeqCollection *
+SetClassification(col:SeqCollection *,cl:SPClassifier *):bool
+GetClassifications():SeqCollection *
+FindClassifier(cl:SPClassifier *):SPClassifier *
+FindPrimitive(nm:char *):SpecPrimitive *
+FlattenCategories(col:SeqCollection *):SeqCollection *
+HasRelation(rt:RelationType *,su:SpecUnit *=0):SPRelation *

www.manaraa.com

180 Phd Thesis - Spring 98

A 2.2 Interface Object Models

A 2.2.1 The Main Window

Application:imported SP2App

+SP2App(argc:int,argv:char **)
+DoMakeManager(type:Symbol):Manager *
+DoMenuCommand(cmd:int):Command *
+DoSetupMenu(m:Menu *)

Manager:imported

MainWin

+libWin:Manager*
+projWin:Manager*

+MainWin
+~MainWin
+DoMakeContent():VObject *
+Control(id:int,part:int,val:void *)
+DoMakeMenuBar():MenuBar *
+GetInitialWindowSize():Point
+SetupWindows(id:int):Manager *

:include

Application.h
Manager.h
Box.h
CommandProcessor.h
SPcommands.h

www.manaraa.com

Phd Thesis - Spring 98 181

Interface Object Models

A 2.2.2 The Product Libraries Window

Document:imported

:include

Document.h
Product.hxx
TextItem.h
I_SPTreeView.hxx

ProductLibWin

#loadedLibs:SeqCollection *
+libsView:SPTreeView *
#libName:TextItem *
#libFile:TextItem *

+ProductLibWin(&dt:const Symbol)
+~ProductLibWin
+AboutToLoad(d:Data *)
+BeforeClose()
+CanLoad(d:Data *):bool
+CloseLib(lib:ProductLib *=0)
+CopyItem()
+DoMakeContent():VObject *
+DoMakeMenuBar():MenuBar *
+DoMenuCommand(cmd:int):Command *
+DoSetupMenu(m:Menu *)
+DoRead(&from:IStream,d:Data *):bool
+DoReadData(d:Data *):bool
+DoWrite(&to:OStream,d:Data *,lib:ProductLib *):bool
+EditProduct()
+GetInitialWindowSize():Point
+GetMenu():Menu *
+isWindow(op:Object *):Manager *
+isFileOpen(d:Data *):bool
+Load(d:Data *=0,unique:bool=TRUE):bool
+LoadData(d:Data *,unique:bool):bool
+MakeMenu(menuId:int):Menu *
+NewLib()
+NewProduct()
+NewModel()
+NewProject()
+OpenProject()
+OpenModel()
+PasteItem()
+RemoveProduct()
+RenameProduct()
+RenameLib()
+RenameModel()
+RemoveModel()
+Revert()
+Save(prLib:ProductLib *=0):bool
+SaveAs(prLib:ProductLib *=0):bool
+Store(prLib:ProductLib *=0)
+SaveChanges():bool
+SetStatusBarText()

www.manaraa.com

182 Phd Thesis - Spring 98

A 2.2.3 The Product Editor Window

:include

Document.h
Product.hxx
TextItem.h
I_SPTreeView.hxx

Manager:imported

ProductEditorWin

#product:Product *
#activeModel:ProductModel *
#specsView:SPTreeView *
#classView:SPTreeView *
#relView:SPTreeView *
#productName:TextItem *
#modelName:TextItem *
+reuse:bool

+ProductEditorWin(nm:char *,pr:Product *,md:ProductModel *=0)
+~ProductEditorWin
+CopyItem()
+CompileClassList(pr:ProductModel *):SeqCollection *
+CreateBoolean()
+CreateEnum()
+CreateClassGroup()
+CreateClass()
+CreateInteger()
+CreateFloat()
+CreateRelType()
+CreateString()
+CutItem()
+DoMakeContent():VObject *
+DoMakeMenuBar():MenuBar *
+DoMenuCommand(cmd:int):Command *
+DoSetupMenu(m:Menu *)
+DoObserve(:int,part:int,ch:void *,op:Object *)
+EditSpecElement()
+EditClassGroup()
+EditClass()
+EditRelType()
+EditMechanisms()
+GetInitialWindowSize():Point
+GetMenu():Menu *
+GetSelectedNode():SPTreeNode *
+GetProduct():Product *
+isWindow(op:Object *):Manager *
+MakeMenu(menuId:int):Menu *
+NewSpecGroup()
+NewGenMechanism()
+PasteItem()
+RenameClass()
+SetProduct(pr:Product *):bool
+SetActiveModel(md:ProductModel *=0):bool
+SetStatusBarText()
+SetModelsMenu()
+SetGenerationMenu()

www.manaraa.com

Phd Thesis - Spring 98 183

Interface Object Models

A 2.2.4 The Generation Manager Window

:include

Manager.h
Buttons.h
GenMechanism.hxx
TextItem.h
I_SPTreeView.hxx
SPColl.hxx

Manager:imported

GenManagerWin

#activeMechanism:GenMechanism *
#product:Product *
#inSpecsView:SPTreeView *
#inClassView:SPTreeView *
#inRelView:SPTreeView *
#outSpecsView:SPTreeView *
#outClassView:SPTreeView *
#outRelView:SPTreeView *
#mechName:TextItem *
#inName:TextItem *
#outName:TextItem *
#mapSpecs:ActionButton *
#mapClass:ActionButton *
#mapRels:ActionButton *
#mapObjectsView:SPTreeView *
#formulaField:SPTextField *
#formulaFieldLabel:TextItem *
+reuse:bool

+GenManagerWin(nm:char *,gm:GenMechanism *,pr:Product *)
+~GenManagerWin
+Control(id:int,part:int,val:void *)
+DoMakeContent():VObject *
+DoMakeMenuBar():MenuBar *
+DoMenuCommand(cmd:int):Command *
+DoSetupMenu(m:Menu *)
+DoObserve(:int,part:int,ch:void *,op:Object *)
+GetInitialWindowSize():Point
+GetMenu():Menu *
+GetMechanism():GenMechanism*
+isWindow(op:Object *):Manager *
+MakeMenu(menuId:int):Menu *
+MapSpecs()
+MapClass()
+MapRels()
+NewGM()
+RemoveMapObject()
+SetProduct(pr:Product *):bool
+SetActiveGM(md:GenMechanism *=0):bool
+SetButtons()
+SetGenParameters()
+SetStatusBarText()
+SetInModelsMenu()
+SetOutModelsMenu()
+SetGenerationMenu()
+SetInputModel(pr:ProductModel *)
+SetOutputModel(pr:ProductModel *)
+SetMapObjectsView()
+UpdateFormula()
+UpdateFormulaField()

www.manaraa.com

184 Phd Thesis - Spring 98

A 2.2.5 The Classifier Editor Window

Manager:imported

ClassifierEditor

#classifier:SPClassifier *
#allClassifiers:SeqCollection *
#classifiersView:SPCollView *
#contView:SPCollView *
#constView:SPCollView *

+ClassifierEditor(cl:SPClassifier *,col:SeqCollection *)
+~ClassifierEditor
+DoMakeContent():VObject *
+Control(id:int,part:int,val:void *)
+DoMakeMenuBar():MenuBar *
+GetInitialWindowSize():Point
+UpdateInformation(cl:SPClassifier *,col:SeqCollection *)
+AddToCont()
+AddToConst()
+RemoveFromCont()
+RemoveFromConst()

10:include

Manager.h
Box.h
CommandProcessor.h
SPcommands.h
SPColl.hxx
ProductModel.hxx

www.manaraa.com

Phd Thesis - Spring 98 185

Interface Object Models

A 2.2.6 The Projects Window

:include

Document.h
Product.hxx
TextItem.h
I_SPTreeView.hxx

Document:imported ProjectWin

#loadedProjs:SeqCollection *
#projsView:SPTreeView *
#specsView:SPTreeView *
#outputView:SPTreeView *
#projName:TextItem *
#projFile:TextItem *
#specsModelLabel:TextItem *
#outputModelLabel:TextItem *
#outputNameLabel:TextItem *
#gmLabel:TextItem *
#apLabel:TextItem *
+activeProduct:Product *
+activeGM:GenMechanism *
+activeOutput:ProductConstruct *

+ProjectWin(&dt:const Symbol)
+~ProjectWin
+AboutToLoad(d:Data *)
+AggregateSUs()
+BeforeClose()
+CanLoad(d:Data *):bool
+CloseProject(proj:Project *=0)
+CopyItem()
+CutItem()
+DisaggregateSU()
+DoMakeContent():VObject *
+DoMakeMenuBar():MenuBar *
+DoMenuCommand(cmd:int):Command *
+DoObserve(:int,part:int,ch:void *,op:Object *)
+DoSetupMenu(m:Menu *)
+DoRead(&from:IStream,d:Data *):bool
+DoReadData(d:Data *):bool
+DoWrite(&to:OStream,d:Data *,proj:Project *):bool
+GenerateOutput()
+GetInitialWindowSize():Point
+GetMenu():Menu *
+GetSelectedNode():SPTreeNode *
+isWindow(op:Object *):Manager *
+isFileOpen(d:Data *):bool
+Load(d:Data *=0,unique:bool=TRUE):bool
+LoadData(d:Data *,unique:bool):bool
+MakeMenu(menuId:int):Menu *
+NewProject()
+NewProduct()
+NewSU()
+EditSU()
+EditProduct()
+PasteItem()
+RemoveProduct()
+RenameProduct()
+RenameProject()
+RenameSU()
+Revert()
+Save(proj:Project *=0):bool
+SaveAs(proj:Project *=0):bool
+Store(proj:Project *=0)
+SaveChanges():bool
+SetModel()
+SetParameters()
+SetStatusBarText()
+SetGenMenu()
+SetOutputMenu()

www.manaraa.com

186 Phd Thesis - Spring 98

A 2.2.7 The Specification Unit Editor Window

SpecUnit:imported Manager:imported

SPCollView:imported

SpecUnitEditorWin

#reuseWindow:bool
#relValue:SPTextField *
#relButton:ActionButton *
#relTypesCluster:OneOfCluster *

+SpecUnitEditorWin(nm:char *,su:SpecUnit *,suh:OrdCollection *)
+~SpecUnitEditorWin
+CompileSUs(sus:SeqCollection *):SeqCollection *
+Control(id:int,part:int,val:void *)
+CreateRelation()
+DoMakeContent():VObject *
+DoMakeMenuBar():MenuBar *
+DoObserve(:int,part:int,ch:void *,op:Object *)
+DoSetupMenu(m:Menu *)
+DoMenuCommand(cmd:int):Command *
+GetInitialWindowSize():Point
+GetMenu():Menu *
+GetSU():SpecUnit *
+GetReuse():bool
+MakeMenu(menuId:int):Menu *
+MakeAttributes():Expander *
+MakeClassifications():Expander *
+MakeRelations():Expander *
+Reload()
+Save():bool
+SetFieldString(tf:SPTextField *)
+SetRelations()
+SetRelValue()
+SetSU(su:SpecUnit *):bool
+SetReuse(state:bool)
+UpdateAttribute(tf:SPTextField *)

relations

SU

10:include

Manager.h
Expander.h
Command.h
SPcommands.h
OneOfCluster.h
Buttons.h
SPColl.hxx
SeqColl.h
SpecUnit.hxx

www.manaraa.com

Phd Thesis - Spring 98 187

Interface Object Models

A 2.2.8 The Tree View

TreeNode:imported

TreeView:imported

SPTreeNode

#spObject:Object *

+SPTreeNode(id:int,cp:SeqCollection*,op:Object *)
+~SPTreeNode
+SetSpObject(op:Object *):bool
+GetSpObject():Object *
+DoObserve(:int,part:int,ch:void *,op:Object *)
+UpdateNodeLabel(ch:char *)
+PrintOnWhenObserving(obj:Object*):bool
+DoMiddleButtonDownCommand(p:Point,t:Token,i:int):Command *
+DoLeftButtonDownCommand(p:Point,t:Token,cl:int):Command *
+AddAfterNode(tr:SPTreeNode *,before:SPTreeNode *)
+AddFirst(tr:SPTreeNode *)
+UpdateOtherNodes()
+CanDrop(mNode:TreeNode *):bool
+Drop(selectedNode:TreeNode *):bool

10:include

Box.h
TreeView.h
TextItem.h
CommandProcessor.h
SPcommands.h
SpecUnit.hxx

SPTreeView

#dragAndDropStatus:bool=FALSE

+SPTreeView(eh:EvtHandler *,lt:TreeLayout,tc:TreeConnection)
+Add(op:Object *,tr:SPTreeNode *):TreeNode *
+AugmentLists(l1:OrdCollection *,l2:OrdCollection *):OrdCollection *
+BuildTree(op:Object *):VObject *
+ClearSelection(doit:bool=TRUE)
+ComposeNodeName(su:SpecUnit *):char *
+DoLeftButtonDownCommand(p:Point,t:Token,clicks:int):Command *
+DragAndDropEnabled():bool
+EnableDragAndDrop(sts:bool=TRUE)
+InstallTree(root:Object *)
+MakeChildrenIter(op:Object *):Iterator *
+MakeTreeNode(id:int,items:SeqCollection *,op:Object *):TreeNode *
+NodeAsVObject(op:Object *):VObject *
+PasteData(data:Data *):Command *
+SetSelection(vop:VObject *)

Command:imported

TreeDragAndDropSelector

#tv:SPTreeView *
#movedNode:SPTreeNode *
#toNode:SPTreeNode *
#delta:Point
#oldcursor:GrCursor
#moved:bool

+TreeDragAndDropSelector(tvp:SPTreeView*,selectedNode:SPTreeNode*)
+TrackMouse(tp:TrackPhase,ap:Point,p:Point,np:Point):Command *
+TrackFeedback(p:Point,np:Point,b:bool)
+DrawCaretFeedBack(at:int)
+FlattenTree(strTree:TreeNode *):OrdCollection *

www.manaraa.com

188 Phd Thesis - Spring 98

A 2.2.9 The Collection View

:include

<stdlib.h>
CollView.h
Fields.h
TextItem.h
ImageItem.h
SeqColl.h
PopupItem.h

CollectionView:imported

SPCollView

+SPCollView(eh:EvtHandler *,m:SeqCollection *)
+DoLeftButtonDownCommand(p:Point,t:Token,clicks:int):Command *
+GetSelectedItem():SPListItem *
+ElementsListAsSPListItem(seqColl:SeqCollection *):SeqCollection *
+ElementAsSPListItem(objPtr:Object *):SPListItem *
+HasSelection():bool
+Input(p:Point,t:Token&,w:Clipper *):Command *
+SetSelection(newsel:Rectangle,sendcontrol:bool=FALSE):void
+DoObserve(id:int,partCode:int,ch:void *,objPtr:Object *):void
+PrintOnWhenObserving(objPtr:Object *):bool
+UpdateListView(tempColl:SeqCollection *):void

Command:imported

SPCollViewSelector

#lvp:CollectionView *
#itemptr:VObject *
#last:VObject *
#dontstuck:bool
#item:Point

+SPCollViewSelector(v:CollectionView *,dontstucktoborder:bool)
+TrackFeedback(p1:Point,pp:Point,on:bool):void
+TrackMouse(atp:TrackPhase,p1:Point,p2:Point,np:Point):Command *

SPListItem

#spObject:Object *

+SPListItem(objPtr:Object *,name:char *)
+~SPListItem()
+GetSPObject():Object *
+SetSPObject(op:Object *):bool
+SetName(name:char *):bool
+GetName():char *
+PrintOnWhenObserving(objPtr:Object *):bool
+DoObserve(id:int,partCode:int,ch:void *,objPtr:Object *):void

TextItem:imported

www.manaraa.com

Phd Thesis - Spring 98 189

Interface Object Models

A 2.2.10 The Text Field and Popup Button View

TextField:imported

SPTextField

#spObject:Object *

+SPTextField(id:int,minWidth:int)
+Input(lp:Point,t:Token&,vf:Clipper *):Command *
+DoObserve(id:int,partCode:int,ch:void *,objPtr:Object *):void
+SetSpObject(op:Object *)
+GetSpObject():Object *

PopupButton:imported

SPPopupButton

#spObject:Object *

+SPPopupButton(id:int,dfltid:int,m:Menu *)
+GetSPObject():Object *
+SetSPObject(op:Object *)
+Control(id:int,part:int,v:void *)

www.manaraa.com

190 Phd Thesis - Spring 98

